Skip to main content
Log in

Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Polydopamine/NZVI@biochar composite (PDA/NZVI@BC) with high removal efficiency of tetracycline (TC) in aqueous solutions was successfully synthesized. The resultant composite demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance can be attributed to the presence of the huge surface area on biochar (BC), which could enhance NZVI dispersion and prolong its longevity. The carbonyl group contained on the surface of biochar could combine with the amino group on polydopamine(PDA). The hydroxyl groups in PDA is able to enhance the dispersion and loading of NZVI on BC. Being modified by PDA, the hydrophilicity of biochar was improved. Among BC, pristine NZVI and PDA/NZVI@BC, PDA/ NZVI@BC exhibited the highest activity for removal of TC. Compared with NZVI, the removal efficiency of TC could be increased by 55.9% by using PDA/NZVI@BC under the same conditions. The optimal modification time of PDA was 8h, and the ratio of NZVI to BC was 1:2. In addition, the possible degradation mechanism of TC was proposed, which was based on the analysis of degraded products by LC-MS. Different important factors impacting on TC removal (including mass ratio of NZVI to BC/PDA, initial concentration, pH value and the initial temperature of the solution) were investigated as well. Overall, this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An B, Liang Q, Zhao D (2011). Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Research, 45(5): 1961–1972

    Article  CAS  Google Scholar 

  • Arshadi M, Abdolmaleki M K, Mousavinia F, Foroughifard S, Karimzadeh A (2017). Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study. Journal of Colloid and Interface Science, 486: 296–308

    Article  CAS  Google Scholar 

  • Arshadi M, Soleymanzadeh M, Salvacion J W, SalimiVahid F (2014). Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426: 241–251

    Article  CAS  Google Scholar 

  • Cai Z, Fu J, Du P, Zhao X, Hao X, Liu W, Zhao D (2018). Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 332: 227–236

    Article  CAS  Google Scholar 

  • Cao M, Wang L, Ai Z, Zhang L (2015). Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. Journal of Hazardous Materials, 292: 27–33

    Article  CAS  Google Scholar 

  • Chen S S, Hsu B C, Hung LW (2008). Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials, 152(3): 1092–1097

    Article  CAS  Google Scholar 

  • Chen WR, Huang C H (2009). Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen. Environmental Science & Technology, 43(2): 401–407

    Article  CAS  Google Scholar 

  • Daghrir R, Drogui P (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3): 209–227

    Article  CAS  Google Scholar 

  • Ding Y H, Floren M, Tan W (2016). Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2(4): 121–136

    Article  CAS  Google Scholar 

  • Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332: 79–86

    Article  CAS  Google Scholar 

  • Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y (2016). The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere, 144: 1682–1689

    Article  CAS  Google Scholar 

  • Feng J, Zhu B W, Lim T T (2008). Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere, 73(11): 1817–1823

    Article  CAS  Google Scholar 

  • Ghauch A, Tuqan A, Assi H A (2009). Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 157(5): 1626–1635

    Article  CAS  Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo I M, He D, Dong H (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 75: 224–248

    Article  CAS  Google Scholar 

  • He F, Zhao D (2008). Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 84(3-4): 533–540

    Article  CAS  Google Scholar 

  • Hsieh W P, Pan J R, Huang C, Su Y C, Juang Y J (2010). Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 408(3): 672–679

    Article  CAS  Google Scholar 

  • Jeong J, Song W, Cooper W J, Jung J, Greaves J (2010). Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere, 78(5): 533–540

    Article  CAS  Google Scholar 

  • Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y (2013). Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 5(24): 12895–12904

    Article  CAS  Google Scholar 

  • Lee H, Dellatore S M, Miller W M, Messersmith P B (2007). Musselinspired surface chemistry for multifunctional coatings. Science, 318 (5849): 426–430

    Google Scholar 

  • Li J, Bao H, Xiong X, Sun Y, Guan X (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151: 276–283

    Article  CAS  Google Scholar 

  • Li R, Jin X, Megharaj M, Naidu R, Chen Z (2015b). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264: 587–594

    Article  CAS  Google Scholar 

  • Li Y, Cheng W, Sheng G, Li J, Dong H, Chen Y, Zhu L (2015c). Synergetic effect of a pillared bentonite support on Se(VI) removal by nanoscale zero valent iron. Applied Catalysis B: Environmental, 174–175: 329–335

    Article  CAS  Google Scholar 

  • Loget G, Yoo J E, Mazare A, Wang L, Schmuki P (2015). Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochemistry Communications, 52: 41–44

    Article  CAS  Google Scholar 

  • Lyu H, Zhao H, Tang J, Gong Y, Huang Y, Wu Q, Gao B (2018). Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere, 194: 360–369

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69: 234–242

    Article  CAS  Google Scholar 

  • Sarmah A K, Meyer M T, Boxall A B (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5): 725–759

    Article  CAS  Google Scholar 

  • Sever M J, Weisser J T, Monahan J, Srinivasan S, Wilker J J (2004). Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie, 116: 43(4): 448–450

    Article  Google Scholar 

  • Shao B, Liu L F, Yang F L, Shan D N, Yuan H (2012). Membrane modification using polydopamine and/or PDA coated TiO2 nano particles for wastewater treatment. Procedia Engineering, 44: 1431–1432

    Article  Google Scholar 

  • Shen W, Mu Y, Wang B, Ai Z H, Zhang L Z (2017). Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles. Applied Surface Science, 393: 316–324

    Article  CAS  Google Scholar 

  • Shi L N, Zhang X, Chen Z L (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45(2): 886–892

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang P E, Fang J, Zhao D (2016b). Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 214: 94–100

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang P E, Zheng L, Cheng W, Fang J, Zhao D (2016a). Remediation of hexavalent chromium contaminated soil by biocharsupported zero-valent iron nanoparticles. Journal of Hazardous Materials, 318: 533–540

    Article  CAS  Google Scholar 

  • Su J, Lin S, Chen Z, Megharaj M, Naidu R (2011). Dechlorination of pchlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics. Desalination, 280(1-3): 167–173

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Liu H, Ma J (2008). Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Research, 42(18): 4656–4664

    Article  CAS  Google Scholar 

  • Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K (2009). A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 327(1-2): 244–253

    Article  CAS  Google Scholar 

  • Yang K, Yue Q, Han W, Kong J, Gao B, Zhao P, Duan L (2015). Effect of novel sludge and coal cinder ceramic media in combined anaerobic–aerobic bio-filter for tetracycline wastewater treatment at low temperature. Chemical Engineering Journal, 277: 130–139

    Article  CAS  Google Scholar 

  • Yang L, Phua S L, Teo J K H, Toh C L, Lau S K, Ma J, Lu X (2011). A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Applied Materials & Interfaces, 3(8): 3026–3032

    Article  CAS  Google Scholar 

  • Yin W, Wu J, Li P, Lin G, Wang X, Zhu B, Yang B (2012a). Reductive transformation of pentachloronitrobenzene by zero-valent iron and mixed anaerobic culture. Chemical Engineering Journal, 210: 309–315

    Article  CAS  Google Scholar 

  • Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B (2012b). Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chemical Engineering Journal, 184: 198–204

    Article  CAS  Google Scholar 

  • Yu J, Kan Y, Rapp M, Danner E, Wei W, Das S, Miller D R, Chen Y, Waite J H, Israelachvili J N (2013). Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proceedings of the National Academy of Sciences of the United States of America, 110(39): 15680–15685

    Article  Google Scholar 

  • Zabihi Z, Araghi H (2016a). Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite. Physics Letters, 380(45): 3828–3831

    Article  CAS  Google Scholar 

  • Zabihi Z, Araghi H (2016b). Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synthetic Metals, 217: 87–93

    Article  CAS  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3): 1591–1596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (Grant Nos. 51368025 and 51068011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ning.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lian, W., Sun, X. et al. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution. Front. Environ. Sci. Eng. 12, 9 (2018). https://doi.org/10.1007/s11783-018-1066-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1066-3

Keywords

Navigation