Skip to main content
Log in

Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Metal speciation can provide sufficient information for environmental and geochemical researches. In this study, based on the speciation determination of Cu and Zn in the Yangtze Estuary sediments, roles of eight geochemical controls (i.e., total organic carbon (TOC), clay, Fe/Mn in five chemical fractions and salinity) are fully investigated and sequenced with correlation analysis (CA) and principal components analysis (PCA). Results show that TOC, clay and Fe/Mn oxides are key geochemical factors affecting the chemical speciation distributions of Cu and Zn in sediments, while the role of salinity appears to be more indirect effect. The influencing sequence generally follows the order: TOC> clay>Mn oxides>Fe oxides>salinity. Among the different fractions of Fe/Mn oxides, residual and total Fe content, and exchangeable and carbonate Mn exert the greatest influences, while exchangeable Fe and residual Mn show the poorest influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z L, Liu C Q. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chemical Geology, 2003, 202(3–4): 383–396

    Article  CAS  Google Scholar 

  2. Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Science of the Total Environment, 2004, 330(1–3): 115–129

    Article  CAS  Google Scholar 

  3. Eggleton J, Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 2004, 30(7): 973–980

    Article  CAS  Google Scholar 

  4. Beck M, Böning P, Schückel U, Stiehl T, Schnetger B, Rullkötter J, Brumsack H J. Consistent assessment of trace metal contamination in surface sediments and suspended particulate matter: a case study from the Jade Bay in NW Germany. Marine Pollution Bulletin, 2013, 70(1–2): 100–111

    Article  CAS  Google Scholar 

  5. Liu B, Hu K, Jiang Z, Yang J, Luo X, Liu A. Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 2011, 62(2): 265–275

    Article  CAS  Google Scholar 

  6. Sander S G, Hunter K A, Harms H, Wells M. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability. Environmental Science & Technology, 2011, 45(15): 6388–6395

    Article  CAS  Google Scholar 

  7. Yang Z, Wang Y, Shen Z, Niu J, Tang Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 2009, 166(2–3): 1186–1194

    Article  CAS  Google Scholar 

  8. Passosa E, Alves J, Santos I, Alves J, Garcia C, Costa A. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchemical Journal, 2010, 96(1): 50–57

    Article  Google Scholar 

  9. Chakraborty P, Babu P V, Sarma V V. A study of lead and cadmium speciation in some estuarine and coastal sediments. Chemical Geology, 2012, 294: 217–225

    Article  Google Scholar 

  10. Zhao X, Dong D, Hua X, Dong S. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Journal of Hazardous Materials, 2009, 170(2–3): 570–577

    Article  CAS  Google Scholar 

  11. Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851

    Article  CAS  Google Scholar 

  12. Wen L S, Warnken K W, Santschi P H. The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry, 2008, 112(1): 20–37

    Article  CAS  Google Scholar 

  13. Dai Y, Yin L, Niu J. Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environmental Science & Technology, 2011, 45(24): 10611–10618

    Article  CAS  Google Scholar 

  14. Zhao S, Feng C, Huang X, Li B, Niu J, Shen Z. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite. Journal of Hazardous Materials, 2012, 203–204: 317–325

    Article  Google Scholar 

  15. Owojori O J, Reinecke A J, Rozanov A B. Role of clay content in partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 2009, 72(1): 99–107

    Article  CAS  Google Scholar 

  16. Garnier J M, Guieu C. Release of cadmium in the Danube estuary: contribution of physical and chemical processes as determined by an experimental approach. Marine Environmental Research, 2003, 55(1): 5–25

    Article  CAS  Google Scholar 

  17. Calmano W, Hong J, Förstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 1993, 28(8): 223–235

    CAS  Google Scholar 

  18. Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 2009, 407(13): 3972–3985

    Article  Google Scholar 

  19. Förstner U, Ahlf W, Calmano W. Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: combined effects of salinity and redox variation. Marine Chemistry, 1989, 28(1): 145–158

    Article  Google Scholar 

  20. Acosta J A, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S. Salinity increases mobility of heavy metals in soils. Chemosphere, 2011, 85(8): 1318–1324

    Article  CAS  Google Scholar 

  21. Zhao S, Feng C, Wang D, Liu Y, Shen Z. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere, 2013, 91(7): 977–984

    Article  CAS  Google Scholar 

  22. Wong V, Johnston S, Burton E, Bush R, Sullivan L, Slavich P. Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality. Geoderma, 2010, 160(2): 252–263

    Article  CAS  Google Scholar 

  23. Saito Y, Yang Z, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 2001, 41(2): 219–231

    Article  Google Scholar 

  24. Li B, Feng C, Li X, Chen Y, Niu J, Shen Z. Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Marine Pollution Bulletin, 2012, 64(3): 636–643

    Article  CAS  Google Scholar 

  25. Elzinga E J, Cirmo A. Application of sequential extractions and Xray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Journal of Hazardous Materials, 2010, 183(1–3): 145–154

    Article  CAS  Google Scholar 

  26. Giacomino A, Malandrino M, Abollino O, Velayutham M, Chinnathangavel T, Mentasti E. An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination. Environmental Pollution, 2010, 158(2): 416–423

    Article  CAS  Google Scholar 

  27. Shao M, Zhang T, Fang H H. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation. Water Research, 2009, 43(12): 2961–2968

    Article  CAS  Google Scholar 

  28. Naji A, Ismail A, Ismail A R. Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchemical Journal, 2010, 95(2): 285–292

    Article  CAS  Google Scholar 

  29. Su D C, Wong J W C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, 2004, 29(7): 895–900

    Article  CAS  Google Scholar 

  30. Banerjee A D K. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 2003, 123(1): 95–105

    Article  CAS  Google Scholar 

  31. Sundaray S K, Nayak B B, Lin S, Bhatta D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi basin, India. Journal of Hazardous Materials, 2011, 186(2–3): 1837–1846

    Article  CAS  Google Scholar 

  32. Chao T T. Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 1984, 20(2): 101–135

    Article  CAS  Google Scholar 

  33. Wang X, Li Y. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals. Journal of Hazardous Materials, 2011, 189(3): 719–723

    Article  CAS  Google Scholar 

  34. Plach J M, Elliott A V C, Droppo I G, Warren L A. Physical and ecological controls on freshwater floc trace metal dynamics. Environmental Science & Technology, 2011, 45(6): 2157–2164

    Article  CAS  Google Scholar 

  35. Rath P, Panda U C, Bhatta D, Sahu K C. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-a case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials, 2009, 163(2–3): 632–644

    Article  CAS  Google Scholar 

  36. Goh B P L, Chou L M. Heavy metal levels in marine sediments of Singapore. Environmental Monitoring and Assessment, 1997, 44(1–3): 67–80

    Article  CAS  Google Scholar 

  37. Turner A. Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 2010, 60(2): 159–171

    Article  CAS  Google Scholar 

  38. Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 1989, 113(2): 257–264

    Article  CAS  Google Scholar 

  39. Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004, 30(6): 769–783

    Article  CAS  Google Scholar 

  40. Li Q, Wu Z, Chu B, Zhang N, Cai S, Fang J. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 2007, 149(2): 158–164

    Article  CAS  Google Scholar 

  41. Sundaray S K, Nayak B B, Lin S, Bhatta D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi basin, India. Journal of Hazardous Materials, 2011, 186(2–3): 1837–1846

    Article  CAS  Google Scholar 

  42. Lasheen M R, Ammar N S. Speciation of some heavy metals in River Nile sediments, Cairo, Egypt. Environmentalist, 2009, 29(1): 8–16

    Article  Google Scholar 

  43. Nordmyr L, Österholm P, Aström M. Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils. Marine Environmental Research, 2008, 66(3): 378–393

    Article  CAS  Google Scholar 

  44. Turner A. Trace metal contamination in sediments from UK estuaries: an empirical evaluation of the role of hydrous iron and manganese oxides. Estuarine, Coastal and Shelf Science, 2000, 50(3): 355–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghong Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, D., Feng, C. et al. Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments. Front. Environ. Sci. Eng. 10, 19–27 (2016). https://doi.org/10.1007/s11783-014-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0723-4

Keywords

Navigation