Skip to main content
Log in

Experimental investigation on mechanical behaviors of granites after high-temperature exposure

高温处理后花岗岩力学特性的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To investigate the influence of temperature on the physical, mechanical and acoustic emission characteristics of granites, uniaxial compression test, variable-angle shear test, acoustic emission signal monitoring and the measurement of physical parameters including mass, size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900 ° C. The results show that the density and P-wave velocity decrease gradually with increasing T. As the temperature increases, the peak compressive stress decreases while the peak strain increases, due to the fact that a high temperature induces the escaping of waters within granites, the expanding of mineral grains and the generations of fractures. With the increment of T, both the peak shear stress and the cohesion decrease, whereas the frictional angle increases. During the compressing and shearing tests, the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900 °C. When T exceeds 573 °C, the crystal lattice structure of quartz changes from α-phase to β-phase, decreasing the mechanical behavior of granites to a great extent. In addition, the results also indicate that T=500–600 °C is the critical temperature ramge to characterize the influence of temperature on the physical, mechanical and acoustic emission characteristics of granites.

摘要

为了研究高温处理对花岗岩物理力学特性及声发射特征的影响, 本文对25~900 & deg; C 范围内高温处理后的花岗岩试样分别开展了单轴压缩和变角剪切试验, 同时监测了试验过程中的声发射信号, 此外, 还测量了高温处理前后花岗岩试样的质量、尺寸和纵波波速. 结果表明; 花岗岩的密度和波速随着温度的升高而逐渐降低; 随着温度的上升, 花岗岩单轴抗压强度减小而峰值应变增大, 这是因为高温致使岩石内部水分逸出、矿物颗粒不均匀膨胀及裂隙萌生、扩展; 当温度升高时, 花岗岩抗剪强度和黏聚力减小, 而内摩擦角增大; 在压缩和剪切试验过程中, 声发射计数最大值随温度的升高而呈现下降趋势. 当温度超过573 & deg; C 时, 花岗岩中石英的晶体结构由& alpha; 相转变为& beta; 相, 花岗岩力学性能急剧降低. 试验表明, 500~600 & deg; C 可视为花岗岩基本物理力学特性及声发射特征发生突变的临界温度区间.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAI Ming-xing, REINICKE K M, TEODORIU C, et al. Investigation on water-rock interaction under geothermal hot dry rock conditions with a novel testing method [J]. Journal of Petroleum Science and Engineering, 2012, 90–91: 26–30. DOI: https://doi.org/10.1016/j.petrol.2012.04.009.

    Article  Google Scholar 

  2. GALLUP D L. Production engineering in geothermal technology: A review [J]. Geothermics, 2009, 38(3): 326–334. DOI: https://doi.org/10.1016/j.geothermics.2009.03.001.

    Article  Google Scholar 

  3. FENG Zi-jun, ZHAO Yang-sheng, ZHOU An-chao, et al. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China [J]. Renewable Energy, 2012, 39(1): 490–495. DOI: https://doi.org/10.1016/j.renene.2011.09.005.

    Article  Google Scholar 

  4. MUIR J R, EASTMAN A D, MUIR M P. Process to obtain thermal and kinetic energy from a geothermal heat source using supercritical co2: US20110100002 [P]. 2011-05-05.

  5. DUCHANE D, BROWN D. Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico [J]. Geo-Heat Centre Quarterly Bulletin, 2002, 23(4): 13–19.

    Google Scholar 

  6. PEIFFER L, BERNARD-ROMERO R, MAZOT A, et al. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory hot dry rock geothermal system: The Acoculco caldera, Mexico [J]. Journal of Volcanology and Geothermal Research, 2014, 284: 122–137. DOI: https://doi.org/10.1016/j.jvolgeores.2014.07.019.

    Article  Google Scholar 

  7. GUO Liang-liang, ZHANG Yan-jun, YU Zi-wang, et al. Hot dry rock geothermal potential of the Xujiaweizi area in Songliao Basin, northeastern China [J]. Environmental Earth Sciences, 2016, 75(6): 1–22. DOI: https://doi.org/10.1007/s12665-016-5327-9.

    Google Scholar 

  8. YANG Sheng-qi, HUANG Yan-hua, TIAN Wen-ling, et al. Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2087–2107. DOI: https://doi.org/10.1007/s00603-018-1725-5.

    Article  Google Scholar 

  9. DWIVEDI R D, GOEL R K, PRASAD V V R, et al. Thermomechanical properties of Indian and other granites [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 303–315. DOI: https://doi.org/10.1016/j.ijrmms.2007.05.008.

    Article  Google Scholar 

  10. TONG Jian-jun, KARAKUS M, WANG Ming-nian, et al. Shear strength characteristics of shotcrete — rock interface for a tunnel driven in high rock temperature environment [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(4): 331–341. DOI: https://doi.org/10.1007/s40948-016-0039-x.

    Article  Google Scholar 

  11. PENG Jun, RONG Guan, CAI Ming, et al. Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression [J]. Engineering Geology, 2016, 200: 88–93. DOI: https://doi.org/10.1016/j.enggeo.2015.12.011.

    Article  Google Scholar 

  12. KUMARI W G P, RANJITH P G, PERERA M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments [J]. Engineering Geology, 2017, 229: 31–44. DOI: https://doi.org/10.1016/j.enggeo.2017.09.012.

    Article  Google Scholar 

  13. FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite [J]. Applied Thermal Engineering, 2017, 125: 94–103. DOI: https://doi.org/10.1016/j.applthermaleng.2017.07.007.

    Article  Google Scholar 

  14. MIAO Shu-ting, PAN Peng-zhi, YU Pei-yang, et al. Fracture analysis of Beishan granite after high-temperature treatment using digital image correlation [J]. Engineering Fracture Mechanics, 2020, 225: 106847. DOI: https://doi.org/10.1016/j.engfracmech.2019.106847.

    Article  Google Scholar 

  15. LUO Song, GONG Feng-qiang. Linear energy storage and dissipation laws of rocks under preset angle shear conditions [J]. Rock Mechanics and Rock Engineering, 2020, 53(7): 3303–3323. DOI: https://doi.org/10.1007/s00603-020-02105-3.

    Article  Google Scholar 

  16. GONG Feng-qiang, LUO Song, LIN Ge, et al. Evaluation of shear strength parameters of rocks by preset angle shear, direct shear and triaxial compression tests [J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2505–2519. DOI: https://doi.org/10.1007/s00603-020-02050-1.

    Article  Google Scholar 

  17. DU Shou-ji, MA Ming, Chen Hao-hua, et al. Testing study on longitudinal wave characteristics of granite after high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1803–1806.

    Google Scholar 

  18. XIE Y, XU N, QIN Y, CHNE Y. Experimental study on the influence of rapid water cooling and natural cooling on the physical properties of high temperature granite [J]. Geotechnical Investigation & Surveying, 2019, 47(4): 1–5. https://xueshu.baidu.com/usercenter/paper/show?paperid=1f410t80tt3004v0577w0rd029062912&site=xueshu_se.

    Google Scholar 

  19. CHEN You-liang, NI Jing, SHAO Wei, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62–66. DOI: https://doi.org/10.1016/j.ijrmms.2012.07.026.

    Article  Google Scholar 

  20. LIU Shi, XU Jin-yu. An experimental study on the physicomechanical properties of two post-high-temperature rocks [J]. Engineering Geology, 2015, 185: 63–70. DOI: https://doi.org/10.1016/j.enggeo.2014.11.013.

    Article  Google Scholar 

  21. ZHAO Zhi-hong, XU Hao-ran, WANG Ju, et al. Auxetic behavior of Beishan granite after thermal treatment: A microcracking perspective [J]. Engineering Fracture Mechanics, 2020, 231: 107017. DOI: https://doi.org/10.1016/j.engfracmech.2020.107017.

    Article  Google Scholar 

  22. WU Yang-chun, XI Bao-ping, WANG Lei, et al. Experimental study on physico-mechanical properties of granite after high temperature [J]. Journal of Central South University (Science and Technology), 2020, 51(1): 193–203. DOI: CNKI:SUN:ZNGD.0.2020-01-022. (in Chinese)

    Google Scholar 

  23. TANG Zhi-cheng, ZHANG Qing-zhao, PENG Jun. Effect of thermal treatment on the basic friction angle of rock joint [J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1973–1990. DOI: https://doi.org/10.1007/s00603-019-02026-w.

    Article  Google Scholar 

  24. ZHAI Song-tao, WU Gang, ZHANG Yuan, et al. Research on acoustic emission characteristics of granite under high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 126–134. (in Chinese)

    Google Scholar 

  25. WU Gang, ZHAI Song-tao, WANG Yu. Research on characteristics of mesostructure and acoustic emission of granite under high temperature [J]. Rock and Soil Mechanics, 2015, 36(S1): 351–356. DOI: https://doi.org/10.16285/j.rsm.2015.S1.060. (in Chinese)

    Google Scholar 

  26. SU Hai-jian, JING Hong-wen, YIN Qian, et al. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression [J]. Acta Mechanica Sinica, 2017, 33(5): 886–898. DOI: https://doi.org/10.1007/s10409-017-0653-z.

    Article  Google Scholar 

  27. XU Xiao-li. Experimental study of temperature effect of mechanical properties of granite [J]. Rock and Soil Mechanics, 2011, 32(8): 2346–2352. DOI: https://doi.org/10.16285/j.rsm.2011.08.009.(in Chinese)

    Google Scholar 

  28. XI Bao-ping, WU Yang-chun, WANG Shuai, et al. Experimental study on mechanical properties of granite taken from Gonghe Basin, Qinghai Province after high temperature thermal damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2020(1): 69–83. (in Chinese)

  29. ZHANG Lian-ying, MAO Xian-biao, LU Ai-hong. Experimental study on the mechanical properties of rocks at high temperature [J]. Science in China Series E: Technological Sciences, 2009, 52(3): 641–646. DOI: https://doi.org/10.1007/s11431-009-0063-y.

    Article  Google Scholar 

  30. KRANZ R L. Microcracks in rocks: A review [J] Tectonophysics, 1983, 100(1–3): 449–480. DOI: https://doi.org/10.1016/0040-1951(83)90198-1.

    Article  Google Scholar 

  31. WONG T F, BRACE W F. Thermal expansion of rocks: Some measurements at high pressure [J]. Tectonophysics, 1979, 57(2–4): 95–117. DOI: https://doi.org/10.1016/0040-1951(79)90143-4.

    Article  Google Scholar 

  32. OHNO I. Temperature variation of elastic properties of α-quartz up to the α-β transition [J]. Journal of Physics of the Earth, 1995, 43(2): 157–169. DOI: https://doi.org/10.4294/jpe1952.43.157.

    Article  Google Scholar 

  33. VÁZQUEZ P, SHUSHAKOVA V, GÓMEZ-HERAS M. Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation [J]. Engineering Geology, 2015, 189: 58–67. DOI: https://doi.org/10.1016/j.enggeo.2015.01.026.

    Article  Google Scholar 

  34. OCAMPO A, ARENAS E, CHEJNE F, et al. An experimental study on gasification of Colombian coal in fluidisedbed [J]. Fuel, 2003, 82(2): 161–164. DOI: https://doi.org/10.1016/S0016-2361(02)00253-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-cheng Liu  (刘日成).

Additional information

Foundation item

Projects(51979272, BZ2020066) supported by the National Natural Science Foundation of China; Projet supported by the Department of Science and Technology of Jiangsu Province, China

Contributors

LIU Ri-cheng provided the concept and edited the draft of manuscript. HE Ming conducted the literature review and wrote the first draft of the manuscript. YU Li-yuan edited the draft of manuscript. JIANG Yu-jing, LI Zhi-cong and WANG Xiao-lin carried out parts of the experiments and provided corresponding experimental data.

Conflict of interest

HE Ming, YU Li-yuan, LIU Ri-cheng, JIANG Yu-jing, LI Zhi-cong and WANG Xiao-lin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Yu, Ly., Liu, Rc. et al. Experimental investigation on mechanical behaviors of granites after high-temperature exposure. J. Cent. South Univ. 29, 1332–1344 (2022). https://doi.org/10.1007/s11771-022-4998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4998-5

Key words

关键词

Navigation