Skip to main content
Log in

Elastoplastic analysis of solid structures using penalty-based couple stress finite element method within framework of Cosserat continuum

基于Cosserat 连续体框架罚函数偶应力有限元法的固体结构弹塑性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To obviate the complexities of the straight forward couple stress finite element method, the penalty-based couple stress finite element method (named PcouFEM) within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity. To examine the performance of the PcouFEM, three well-known numerical examples are investigated. For the analysis on stress concentration around the circular hole of the planestrain specimen, it was found that as long as the penalty factor Gc is not less than 5 times the shear modulus of the classical continuum G (i. e., Gc⩾5G), the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions. For the strain localization analysis in the uniaxial compression test, it was observed that by applying the PcouFEM, the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed, and based on numerical simulations, it is recommended to define 5GGc⩽10G from the perspective of numerical accuracy. For the soil slope subjected to an eccentric load through the rigid strip footing, it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM.

摘要

为了降低直接偶应力有限元方法的复杂度,在Cosserat 连续体框架下通过对C1连续性进行松弛来获得其近似解,建立基于罚函数的偶应力有限元方法(简称PcouFEM),并通过三个数值算例对PcouFEM 的性能进行了研究. 对于平面应变条件下的圆孔应力集中问题,研究发现当罚因子不小于经典连续体剪切模量的5 倍时(即Gc& ge; 5G),基于缩减积分PcouFEM 计算获得的应力集中因子与解析解基本吻合; 对于单轴压缩试验应变局部化分析,通过应用PcouFEM 可以减弱甚至消除与常规FEM 相关的网格依赖性问题,且从数值精度的角度建议取值为5G& le; Gc& le; 10G; 对于通过刚性条形基础承受偏心载荷的土质边坡,研究发现土坡剪切带模拟中的网格依赖问题同样可以通过应用PcouFEM 得到较大缓解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de BORST R. Simulation of strain localization: A reappraisal of the cosserat continuum [J]. Engineering Computations, 1991, 8(4): 317–332. DOI: https://doi.org/10.1108/eb023842.

    Article  Google Scholar 

  2. LI Xi-kui, TANG Hong-xiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation [J]. Computers & Structures, 2005, 83(1): 1–10. DOI: https://doi.org/10.1016/j.compstruc.2004.08.009.

    Article  Google Scholar 

  3. ZHANG Hong-wu, WANG Hui, LIU Guo-zhen. Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies [J]. Acta Mechanica Sinica, 2005, 21(4): 388–394. DOI: https://doi.org/10.1007/s10409-005-0041-y.

    Article  Google Scholar 

  4. TANG Hong-xiang, SUN Fa-bing, ZHANG Yi-peng, et al. Elastoplastic axisymmetric Cosserat continua and modelling of strain localization [J]. Computers and Geotechnics, 2018, 101: 159–167. DOI: https://doi.org/10.1016/j.compgeo.2018.05.004.

    Article  Google Scholar 

  5. WANG Dong-yong, CHEN Xi, LYU Yan-nan, et al. Geotechnical localization analysis based on Cosserat continuum theory and second-order cone programming optimized finite element method [J]. Computers and Geotechnics, 2019, 114: 103118. DOI: https://doi.org/10.1016/j.compgeo.2019.103118.

    Article  Google Scholar 

  6. VALIPOUR P, GHASEMI S E, VATANI M. Theoretical investigation of micropolar fluid flow between two porous disks [J]. Journal of Central South University, 2015, 22(7): 2825–2832. DOI: https://doi.org/10.1007/s11771-015-2814-1.

    Article  Google Scholar 

  7. CHANG Jiang-fang, CHU Xi-hua, XU Yuan-jie. Finite-element analysis of failure in transversely isotropic geomaterials [J]. International Journal of Geomechanics, 2015, 15(6): 04014096. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000455.

    Article  Google Scholar 

  8. CHEN Xi, WANG Dong-yong, TANG Jian-bin, et al. Geotechnical stability analysis considering strain softening using micro-polar continuum finite element method [J]. Journal of Central South University, 2021, 28(1): 297–310. DOI: https://doi.org/10.1007/s11771-021-4603-3.

    Article  Google Scholar 

  9. SHARBATI E, NAGHDABADI R. Computational aspects of the Cosserat finite element analysis of localization phenomena [J]. Computational Materials Science, 2006, 38(2): 303–315. DOI: https://doi.org/10.1016/j.commatsci.2006.03.003.

    Article  Google Scholar 

  10. KHOEI A R, TABARRAIE A R, GHAREHBAGHI S A. Hadaptive mesh refinement for shear band localization in elasto-plasticity Cosserat continuum [J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10(3): 253–286. DOI: https://doi.org/10.1016/S1007-5704(03)00126-6.

    Article  Google Scholar 

  11. RISTINMAA M, VECCHI M. Use of couple-stress theory in elasto-plasticity [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 136(3, 4): 205–224. DOI: https://doi.org/10.1016/0045-7825(96)00996-6.

    Article  Google Scholar 

  12. MA Xu, CHEN Wan-ji. Refined 18-DOF triangular hybrid stress element for couple stress theory [J]. Finite Elements in Analysis and Design, 2013, 75: 8–18. DOI: https://doi.org/10.1016/j.finel.2013.06.006.

    Article  MathSciNet  Google Scholar 

  13. SHANG Yan, LI Chen-feng, JIA Kang-yu. 8-node hexahedral unsymmetric element with rotation degrees of freedom for modified couple stress elasticity [J]. International Journal for Numerical Methods in Engineering, 2020, 121(12): 2683–2700. DOI: https://doi.org/10.1002/nme.6325.

    Article  MathSciNet  Google Scholar 

  14. SHANG Yan, MAO Yu-hao, CEN Song, et al. Generalized conforming Trefftz element for size-dependent analysis of thin microplates based on the modified couple stress theory [J]. Engineering Analysis with Boundary Elements, 2021, 125: 46–58. DOI: https://doi.org/10.1016/j.enganabound.2021.01.007.

    Article  MathSciNet  Google Scholar 

  15. GOMEZ J, BASARAN C. Computational implementation of Cosserat continuum [J]. International Journal of Materials and Product Technology, 2009, 34(1, 2): 3–36. DOI: https://doi.org/10.1504/ijmpt.2009.022401.

    Article  Google Scholar 

  16. MA Xu. The couple stress/strain gradient theory and its hybrid stress element analysis [D]. Dalian: Dalian University and Technology, 2014. (in Chinese)

    Google Scholar 

  17. GARG N, HAN C S. A penalty finite element approach for couple stress elasticity [J]. Computational Mechanics, 2013, 52(3): 709–720. DOI: https://doi.org/10.1007/s00466-013-0842-y.

    Article  MathSciNet  Google Scholar 

  18. PAPANICOLOPULOS S A, ZERVOS A, VARDOULAKIS I. A three-dimensional C1 finite element for gradient elasticity [J]. International Journal for Numerical Methods in Engineering, 2009, 77(10): 1396–1415. DOI: https://doi.org/10.1002/nme.2449.

    Article  MathSciNet  Google Scholar 

  19. FISCHER P, KLASSEN M, MERGHEIM J, et al. Isogeometric analysis of 2D gradient elasticity [J]. Computational Mechanics, 2011, 47(3): 325–334. DOI: https://doi.org/10.1007/s00466-010-0543-8.

    Article  MathSciNet  Google Scholar 

  20. ADACHI T, TOMITA Y, TANAKA M. Computational simulation of deformation behavior of 2D-lattice continuum [J]. International Journal of Mechanical Sciences, 1998, 40(9): 857–866. DOI: https://doi.org/10.1016/S0020-7403(97)00127-6.

    Article  Google Scholar 

  21. CHAKRAVARTY S, HADJESFANDIARI A R, DARGUSH G F. A penalty-based finite element framework for couple stress elasticity [J]. Finite Elements in Analysis and Design, 2017, 130: 65–79. DOI: https://doi.org/10.1016/j.finel.2016.11.004.

    Article  Google Scholar 

  22. PROVIDAS E, KATTIS M A. Finite element method in plane Cosserat elasticity [J]. Computers & Structures, 2002, 80(27–30): 2059–2069. DOI: https://doi.org/10.1016/S0045-7949(02)00262-6.

    Article  Google Scholar 

  23. MINDLIN R D. Influence of couple-stresses on stress concentrations [J]. Experimental Mechanics, 1963, 3: 1–7. DOI: https://doi.org/10.1007/BF02327219.

    Article  Google Scholar 

  24. PERIĆ D, YU Jian-guo, OWEN D R J. On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua [J]. International Journal for Numerical Methods in Engineering, 1994, 37(8): 1351–1379. DOI: https://doi.org/10.1002/nme.1620370806.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-lin Qi  (齐吉琳).

Additional information

Foundation item

Project(2021YFF0306302) supported by the National Key R& D Program of China; Projects(42002277, 41972279, 42172299) supported by the National Natural Science Foundation of China; Projects(2020M680321, 2021T140046) supported by the China Postdoctoral Science Foundation; Projects(2020-zz-081, 2021-zz-116) supported by the Beijing Postdoctoral Research Foundation, China; Project(X21074) supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture, China

Contributors

WANG Dong-yong performed some analyses and wrote the first draft; CHEN Xi gave some revision suggestions on the first draft; JIANG Sheng-bin performed some analyses and provided some numerical results; QI Ji-lin provided the concept and edited the manuscript; PENG Li-yun edited the final revised draft.

Conflict of interest

WANG Dong-yong, CHEN Xi, JIANG Sheng-bin, QI Ji-lin and PENG Li-yun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dy., Chen, X., Jiang, Sb. et al. Elastoplastic analysis of solid structures using penalty-based couple stress finite element method within framework of Cosserat continuum. J. Cent. South Univ. 29, 1320–1331 (2022). https://doi.org/10.1007/s11771-022-4997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4997-6

Key words

关键词

Navigation