Skip to main content
Log in

Evolution of anisotropy during sandstone rockburst process under double-faces unloading

砂岩双面卸载岩爆过程各向异性特征实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rockburst is one of the major disasters in deep underground rock mechanics and engineering. The precursors of rockbursts play important roles in rockburst prediction. Strainburst experiments were performed under double-face unloading on sandstone with horizontal bedding planes using an independently designed rockburst testing facility. P-wave propagation time during the tests was automatically recorded by the acoustic emission apparatus. The P-wave velocities were calculated in both two directions to analyze their patterns. To find a characteristic precursor for rockburst, the dynamic evolution of rock anisotropy during the rockburst test is quantified by the anisotropic coefficient k, defined as the ratio of the two P-wave velocities in the directions vertical to and parallel to the bedding planes. The results show that rockburst occurs on the two free surfaces asynchronously. The rockburst failure occurs in the following order: crack generation, rock peeling, particle ejection, and rock fracture. In the process of rockburst under double-face unloading, the potential evolution characteristics of anisotropy can be generalized as anisotropy-isotropy-anisotropy. The suddenly unloading induces damage in the rock and presents anisotropic coefficient k steeply increasing departing from one, i.e., isotropy. The rocks with horizontal bedding planes will reach the isotropic state before rockburst, which could be considered as a characteristic precursor of this kind of rockburst.

摘要

岩爆是深部地下岩石工程中主要的灾害之一,岩爆前兆信息在岩爆预测中至关重要。利用自主 研发的岩爆设备和具有水平层理的红砂岩开展了双面卸载应变岩爆实验。利用声发射设备自动采集了 实验过程中P 波的传播时间,并且计算分析了P 波在水平层理方向和垂直层理方向的传播速度。为了 找到岩爆的特征前兆信息,将垂直于层理的波速与平行于层理的波速的比值定义为各向异性系数k, 定量分析了岩爆过程中岩石各向异性的演化规律。实验结果表明,两个卸载面的岩爆并非同时发生, 岩爆主要包括裂纹萌生,岩片剥落,颗粒弹射,岩板断裂等过程。双面卸载岩爆实验的各向异性演化 特征可以总结为由各向异性向各向同性转化,而后再次向各向异性转化,并且快速卸载会对岩石产生 损伤,各向异性系数会突增。具有水平层理的岩石在岩爆之前会达到各向同性状态,可以将此视为岩 爆的前兆信息。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COOK N G W. A note on rockbursts considered as a problem of stability [J]. Journal of the South African Institute of Mining and Metallurgy, 1965, 65(10): 551–554. https://www.researchgate.net/publication/285089529_A_note_on_rockbursts_considered_as_a_problem_of_stability.

    Google Scholar 

  2. KAISER P K, MCCREATH D R, TANNANT D D. Canadian rockburst support handbook [M]. Sudbury, Canada: Geomechanics Research Centre, 1996. https://www.researchgate.net/publication/285771770.

    Google Scholar 

  3. HE Man-chao, XIA Hong-man, JIA Xue-na, GONG Wei-li, ZHAO Fei, LIANG Kang-yuan. Studies on classification, criteria and control of rockbursts [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(2): 97–114. DOI: https://doi.org/10.3724/SP.J.1235.2012.00097.

    Article  Google Scholar 

  4. HE Man-chao, MIAO Jin-li, FENG Ji-lin. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  5. FENG Guang-liang, FENG Xia-ting, CHEN Bing-rui, XIAO Ya-xun, YU Yang. A microseismic method for dynamic warning of rockburst development processes in tunnels [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2061–2076. DOI: https://doi.org/10.1007/s00603-014-0689-3.

    Article  Google Scholar 

  6. MANOUCHEHRIAN A, CAI Ming. Simulation of unstable rock failure under unloading conditions [J]. Canadian Geotechnical Journal, 2016, 53(1): 22–34. DOI: https://doi.org/10.1139/cgj-2015-0126.

    Article  Google Scholar 

  7. HE Jiang, DOU Lin-ming, MU Zong-long, CAO An-ye, GONG Si-yuan. Numerical simulation study on hard-thick roof inducing rock burst in coal mine [J]. Journal of Central South University, 2016, 23(9): 2314–2320. DOI: https://doi.org/10.1007/s11771-016-3289-4.

    Article  Google Scholar 

  8. COOK N G W. The basic mechanics of rockbursts [J]. Journal of the South African Institute of Mining and Metallurgy, 1963, 64(3): 71–78. https://journals.co.za/doi/10.10520/AJA0038223X_3752

    Google Scholar 

  9. SALAMON M D G. Energy considerations in rock mechanics: Fundamental results [J]. Journal of the South African Institute of Mining and Metallurgy, 1984, 84(8): 233–246.

    Google Scholar 

  10. WANG J A, PARK H D. Comprehensive prediction of rockburst based on analysis of strain energy in rocks [J]. Tunnelling and Underground Space Technology, 2001, 16(1): 49–57. DOI: https://doi.org/10.1016/S0886-7798(01)00030-X.

    Article  Google Scholar 

  11. MANSUROV V A. Prediction of rockbursts by analysis of induced seismicity data [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(6): 893–901. DOI: https://doi.org/10.1016/S1365-1609(01)00055-7.

    Article  Google Scholar 

  12. HUA An-zeng, YOU Ming-qing. Rock failure due to energy release during unloading and application to underground rock burst control [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 241–246. DOI: https://doi.org/10.1016/S0886-7798(01)00046-3.

    Article  Google Scholar 

  13. SUN Jin-shan, ZHU Qi-hu, LU Wen-bo. Numerical simulation of rock burst in circular tunnels under unloading conditions [J]. Journal of China University of Mining and Technology, 2007, 17(4): 552–556. DOI: https://doi.org/10.1016/S1006-1266(07)60144-8.

    Article  Google Scholar 

  14. LI Zhi-hua, DOU Lin-ming, LU Cai-ping, MU Zong-long, CAO An-ye. Study on fault induced rock bursts [J]. Journal of China University of Mining and Technology, 2008, 18(3): 321–326. DOI: https://doi.org/10.1016/S1006-1266(08)60068-1.

    Article  Google Scholar 

  15. JIANG Quan, FENG Xia-ting, XIANG Tian-bing, SU Guoshao. Rockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2500 m depth [J]. Bulletin of Engineering Geology and the Environment, 2010, 69(3): 381–388. DOI: https://doi.org/10.1007/s10064-010-0275-1.

    Article  Google Scholar 

  16. HE Man-chao, REN Fu-qiang, LIU Dong-qiao, ZHANG Shudong. Experimental study on strain burst characteristics of sandstone under true triaxial loading and double faces unloading in one direction [J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 149–171. DOI: https://doi.org/10.1007/s00603-020-02272-3.

    Article  Google Scholar 

  17. HE Man-chao, LI Jie-yu, LIU Dong-qiao, LING Kai, REN Fu-qiang. A novel true triaxial apparatus for simulating strain bursts under high stress [J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 759–775. DOI: https://doi.org/10.1007/s00603-020-02285-y.

    Article  Google Scholar 

  18. CHEN Zhi-yong, SU Guo-shao, JU J W, JIANG Jian-qing. Experimental study on energy dissipation of fragments during rockburst [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5369–5386. DOI: https://doi.org/10.1007/s10064-019-01463-9.

    Article  Google Scholar 

  19. NIANDOU H, SHAO J F, HENRY J P, FOURMAINTRAUX D. Laboratory investigation of the mechanical behaviour of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. DOI: https://doi.org/10.1016/S1365-1609(97)80029-9.

    Article  Google Scholar 

  20. LI Cun-bao, XIE He-ping, WANG Jun. Anisotropic characteristics of crack initiation and crack damage thresholds for shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104178. DOI: https://doi.org/10.1016/j.ijrmms.2019.104178.

    Article  Google Scholar 

  21. KAISER P K, CAI Ming. Design of rock support system under rockburst condition [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3): 215–227. DOI: https://doi.org/10.3724/SP.J.1235.2012.00215.

    Article  Google Scholar 

  22. NEMAT-NASSER S, HORII H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6805–6821. DOI: https://doi.org/10.1029/JB087iB08p06805.

    Article  Google Scholar 

  23. NEMAT-NASSER S, HORII H. Rock failure in compression [J]. International Journal of Engineering Science, 1984, 22(8–10): 999–1011. DOI: https://doi.org/10.1016/0020-7225(84)90101-0.

    Article  Google Scholar 

  24. BAGDE M N, PETROŠ V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 237–250. DOI: https://doi.org/10.1016/j.ijrmms.2004.08.008.

    Article  Google Scholar 

  25. ZHANG Xiao-jun. Experimental research on splitting rock burst of surrounding rocks in deep roadways (tunnels) [J]. Journal of Mining & Safety Engineering, 2011, 28(1): 66–71.

    Google Scholar 

  26. WANG Zhao-feng, FENG Xia-ting, YANG Cheng-xiang, ZHOU Yang-yi, XU Hong, HAN Qiang, GAO Yao-hui. Experimental investigation on fracturing process of marble under biaxial compression [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 943–959. DOI: https://doi.org/10.1016/j.jrmge.2020.05.002.

    Article  Google Scholar 

  27. TAKAHASHI M, PARK H, TAKAHASHI N, FUJII Y. True triaxial tests-using permeability and extensional stress parameters to simulate geological history in rocks [J]. Geosystem Engineering, 2013, 16(1): 75–82. DOI: https://doi.org/10.1080/12269328.2013.780760.

    Article  Google Scholar 

  28. HU Xiao-chuan, SU Guo-shao, CHEN Kang, LI Tian-bin, JIANG Quan. Strainburst characteristics under bolt support conditions: An experimental study [J]. Natural Hazards, 2019, 97(2): 913–933. DOI: https://doi.org/10.1007/s11069-019-03682-5.

    Article  Google Scholar 

  29. FENG Xia-ting, ZHANG Xi-wei, KONG R, WANG G. A novel mogi type true triaxial testing apparatus and its use to obtain complete stress-strain curves of hard rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1649–1662. DOI: https://doi.org/10.1007/s00603-015-0875-y.

    Article  Google Scholar 

  30. HÖFER K H, THOMA K. Triaxial tests on salt rocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(2): 195–196. DOI: https://doi.org/10.1016/0148-9062(68)90034-X.

    Article  Google Scholar 

  31. JIANG Bang-you, GU Shi-tan, WANG Lian-guo, ZHANG Guang-chao, LI Wen-shuai. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress [J]. Journal of Central South University, 2019, 26(4): 984–999. DOI: https://doi.org/10.1007/s11771-019-4065-z.

    Article  Google Scholar 

  32. GONG Feng-qiang, LUO Yong, LI Xi-bing, SI Xue-feng, TAO Ming. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels [J]. Tunnelling and Underground Space Technology, 2018, 81: 413–427. DOI: https://doi.org/10.1016/j.tust.2018.07.035.

    Article  Google Scholar 

  33. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular Caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  34. LUO Yong, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  35. HE Man-chao, JIA Xue-na, COLI M, LIVI E, SOUSA L. Experimental study of rockbursts in underground quarrying of Carrara marble [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2012.02.006.

    Article  Google Scholar 

  36. HE Man-chao, NIE Wen, ZHAO Zhi-ye, GUO Wei-hua. Experimental investigation of bedding plane orientation on the rockburst behavior of sandstone [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 311–326. DOI: https://doi.org/10.1007/s00603-011-0213-y.

    Article  Google Scholar 

  37. ZHAO X G, WANG J, CAI M, CHENG C, MA L K, SU R, ZHAO F, LI D J. Influence of unloading rate on the strainburst characteristics of Beishan granite under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 467–483. DOI: https://doi.org/10.1007/s00603-013-0443-2.

    Article  Google Scholar 

  38. HE M C, ZHAO F, CAI M, DU S. A novel experimental technique to simulate pillar burst in laboratory [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 1833–1848. DOI: https://doi.org/10.1007/s00603-014-0687-5.

    Article  Google Scholar 

  39. HE Man-chao, SOUSA L, MIRANDA T, ZHU Gua-long. Rockburst laboratory tests database—Application of data mining techniques [J]. Engineering Geology, 2015, 185: 116–130. DOI: https://doi.org/10.1016/j.enggeo.2014.12.008.

    Article  Google Scholar 

  40. GONG Yu-xin, SONG Zhan-jie, HE Man-chao, GONG Wei-li, REN Fu-qiang. Precursory waves and eigenfrequencies identified from acoustic emission data based on singular spectrum analysis and laboratory rock-burst experiments [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 155–169. DOI: https://doi.org/10.1016/j.ijrmms.2016.11.020.

    Article  Google Scholar 

  41. HE Man-chao, REN Fu-qiang, LIU Dong-qiao. Rockburst mechanism research and its control [J]. International Journal of Mining Science and Technology, 2018, 28(5): 829–837. DOI: https://doi.org/10.1016/j.ijmst.2018.09.002.

    Article  Google Scholar 

  42. AKDAG S, KARAKUS M, TAHERI A, NGUYEN G, HE Man-chao. Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1657–1682. DOI: https://doi.org/10.1007/s00603-018-1415-3.

    Article  Google Scholar 

  43. LIU Dong-qiao, LI De-jian, ZHAO Fei, WANG Cheng-chao. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(3): 251–256. DOI: https://doi.org/10.1016/j.jrmge.2014.04.001.

    Article  Google Scholar 

  44. REN Fu-qiang, ZHU Chun, HE Man-chao. Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst [J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 153–170. DOI: https://doi.org/10.1007/s00603-019-01897-3.

    Article  Google Scholar 

  45. WANG Yang, HE Man-chao, REN Fu-qiang, ZHU Chun, FARAMARZI L. Source analysis of acoustic emissions during granite strain burst [J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1542–1562. DOI: https://doi.org/10.1080/19475705.2019.1593888.

    Article  Google Scholar 

  46. SU Guo-shao, JIANG Jian-qing, ZHAI Shao-bin, ZHANG Gang-liang. Influence of tunnel axis stress on strainburst: An experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1551–1567. DOI: https://doi.org/10.1007/s00603-017-1181-7.

    Article  Google Scholar 

  47. SU Guo-shao, ZHAI Shao-bin, JIANG Jian-qing, ZHANG Gang-liang, YAN Liu-bin. Influence of radial stress gradient on strainbursts: An experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659–2676. DOI: https://doi.org/10.1007/s00603-017-1266-3.

    Article  Google Scholar 

  48. SU Guo-shao, CHEN Zhi-yong, JU J W, JIANG Jian-qing. Influence of temperature on the strainburst characteristics of granite under true triaxial loading conditions [J]. Engineering Geology, 2017, 222: 38–52. DOI: https://doi.org/10.1016/j.enggeo.2017.03.021.

    Article  Google Scholar 

  49. SU Guo-shao, HU Li-hua, FENG Xia-ting, YAN Liu-bin, ZHANG Gang-liang, YAN Si-zhou, ZHAO Bin, YAN Zhao-fu. True triaxial experimental study of rockbursts induced by ramp and cyclic dynamic disturbances [J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1027–1045. DOI: https://doi.org/10.1007/s00603-017-1384-y.

    Article  Google Scholar 

  50. SU Guo-shao, SHI Yan-jiong, FENG Xia-ting, JIANG Jian-qing, ZHANG Jie, JIANG Quan. True-triaxial experimental study of the evolutionary features of the acoustic emissions and sounds of rockburst processes [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 375–389. DOI: https://doi.org/10.1007/s00603-017-1344-6.

    Article  Google Scholar 

  51. WU Wei, ZHAO Zhi-hong, DUAN Kang. Unloading-induced instability of a simulated granular fault and implications for excavation-induced seismicity [J]. Tunnelling and Underground Space Technology, 2017, 63: 154–161. DOI: https://doi.org/10.1016/j.tust.2017.01.002.

    Article  Google Scholar 

  52. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  53. LI Xi-bing, CAO Wen-zhuo, ZHOU Zi-long, ZOU Yang. Influence of stress path on excavation unloading response [J]. Tunnelling and Underground Space Technology, 2014, 42: 237–246. DOI: https://doi.org/10.1016/j.tust.2014.03.002.

    Article  Google Scholar 

  54. HUANG Lu-yuan, YANG Shu-xin, CUI Xiao-feng, CHEN Qun-ce, YAO Rui. Analysis of characteristics of measured stress and stability of faults in North China [J]. Rock and Soil Mechanics, 2013, 34(S1): 204–213. DOI: https://doi.org/10.16285/j.rsm.2013.s1.012.

    Google Scholar 

  55. HORNBY B E, HOWIE J M, INCE D W. Anisotropy correction for deviated-well sonic logs: Application to seismic well tie [J]. Geophysics, 2003, 68(2): 464–471. DOI: https://doi.org/10.1190/1.1567212.

    Article  Google Scholar 

  56. STOEP D M V. Velocity anisotropy measurements in wells [J]. Geophysics, 1966, 31(5): 900–916. DOI: https://doi.org/10.1190/1.1439822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by LIU Dong-qiao and HE Man-chao. LI Dong, LING Kai, HAN Zi-jie, and ZHANG Shu-dong conducted the experiments. LI Jie-yu analyzed the measured data. The initial draft of the manuscript was written by LING Kai and LI Dong and LIU Dong-qiao. All authors replied to reviewers comments and revised the final version.

Corresponding author

Correspondence to Dong-qiao Liu  (刘冬桥).

Additional information

Conflict of interest

LIU Dong-qiao, LING Kai, LI Dong, HE Manchao, LI Jie-yu, HAN Zi-jie, and ZHANG Shu-dong declare that they have no conflict of interest.

Foundation item: Projects(41941018, 51704298) supported by the National Natural Science Foundation of China; Project(2021JCCXSB03) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Dq., Ling, K., Li, D. et al. Evolution of anisotropy during sandstone rockburst process under double-faces unloading. J. Cent. South Univ. 28, 2472–2484 (2021). https://doi.org/10.1007/s11771-021-4780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4780-0

Key words

关键词

Navigation