Skip to main content
Log in

Normal moveout for long offset in isotropic media using the Padé approximation

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

The normal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Padé approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Padé approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum offset-to-depth ratio for the [3, 3]-order Padé approximation is typically double of those in typical methods. The [7, 7]-order Padé approximation performs better than the [3, 3]-order Padé approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbad, B., and Ursin, B., 2012, High-resolution bootstrapped differential semblance: Geophysics, 77(3), U39–U47.

    Article  Google Scholar 

  • Al-Chalabi, M., 1973, Series approximation in velocity and travel time computations: Geophysical Prospecting, 21(4), 783–795.

    Article  Google Scholar 

  • Al-Chalabi, M., 1974, An analysis of stacking, RMS, average and interval velocities over a horizontally layered ground: Geophysical Prospecting, 22(3), 458–475.

    Article  Google Scholar 

  • Alkhalifah, T., 1997, Velocity analysis using nonhyperbolic moveout in transversely isotropic media: Geophysics, 62(6), 1839–1854.

    Article  Google Scholar 

  • Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media: Geophysics, 60(5), 1550–1566.

    Article  Google Scholar 

  • Aptekarev, A. I., Buslaev, V. I., Martínez-Finkelshtein, A., Suetin, S.P., 2011, Padé approximants, continued fractions, and orthogonal polynomials: Russian Mathematical Surveys, 66(6), 1049–1131.

    Article  Google Scholar 

  • Baker, G. A. Jr., 1975, Essentials of Padé approximants in theoretical physics: Academic Press, New York.

    Google Scholar 

  • Blias, E. A., 1982, Calculation of interval velocities for layered medium through hyperbolic travel time approximation: Soviet Geology and Geophysics, 4, 48–54.

    Google Scholar 

  • Blias, E., 2007, Long-spreadlength approximations to NMO function for a multi-layered subsurface: CSEG Recorder, 3, 36–42.

    Google Scholar 

  • Bolshih, C. F., 1956, Approximate model for the reflected wave travel time curve in multilayered media: Applied Geophysics (Book series in Russian), 15, 3–14.

    Google Scholar 

  • Castle, R. J., 1994, A theory of normal moveout: Geophysics, 59(6), 983–999.

    Article  Google Scholar 

  • Causse, E., 2002, Seismic travel time approximations with high accuracy at all offsets: 64th EAGE Conference and Exhibition.

    Google Scholar 

  • Causse, E., 2004, Approximations of reflection traveltimes with high accuracy at all offsets: Journal of Geophysics and Engineering, 1(1), 28–45.

    Article  Google Scholar 

  • Causse, E., Haugen, G. U., and Rommel, B. E., 2000, Large-offset approximation to seismic reflection traveltimes: Geophysical Prospecting, 48(4), 763–778.

    Article  Google Scholar 

  • Cordier, J. P., 1985, Velocities in reflection seismology: Springer Science and Business Media.

    Google Scholar 

  • Choi, H., Byun, J., and Seol, S. J., 2010, Automatic velocity analysis using bootstrapped differential semblance and global search methods: Exploration Geophysics, 41(1), 31–39.

    Article  Google Scholar 

  • Ding, F., Zhang, J. H., and Yao, Z. X., 2011, Optimized Chebyshev method for normal moveout of long-offset seismic data: Progress in Geophysics (in Chinese), 26(3), 836–842.

    Google Scholar 

  • Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20(1), 68–86.

    Article  Google Scholar 

  • Ghosh, S. K., and Kumar, P., 2002, Divergent and asymptotic nature of the time-offset Taner-Koehler series in reflection seismics: Geophysics, 67(6), 1913–1919.

    Article  Google Scholar 

  • Gjøystdal, H., Reinhardsen, J. E., and Ursin, B., 1984, Travel time and wavefront curvature calculations in three-dimensional inhomogeneous layered media with curved interfaces: Geophysics, 49(9), 1466–1494.

    Article  Google Scholar 

  • Gravestock, D. I., Hibburt, J. E., and Drexel, J. F., 1998, Petroleum geology of South Australia. Volume 4: Cooper Basin: Department of Primary Industries and Resources South Australia, Report Book.

    Google Scholar 

  • Grechka, V., and Tsvankin, I., 1998, Feasibility of nonhyperbolic moveout inversion in transversely isotropic media: Geophysics, 63(3), 957–969.

    Article  Google Scholar 

  • Hake, H., Helbig, K., and Mesdag, C. S., 1984, Threeterm Taylor series for t2-x2-curves of P-and S-waves over layered transversely isotropic ground: Geophysical Prospecting, 32(5), 828–850.

    Article  Google Scholar 

  • Halpern, L., and Trefethen, L. N., 1988, Wide-angle oneway wave equations: The Journal of the Acoustical Society of America, 84(4), 1397–1404.

    Article  Google Scholar 

  • Kaila, K. L., and Sain, K., 1994, Errors in RMS velocity and zerooffset two-way time as determined from wideangle seismic reflection travel-times using truncated series: Journal of Seismic Exploration, 3(2), 173–188.

    Google Scholar 

  • Luo, S., and Hale, D., 2012, Velocity analysis using weighted semblance: Geophysics, 77(2), U15–U22.

    Article  Google Scholar 

  • Malovichko, A. A., 1978, A new representation of the travel time curve of reflected waves in horizontally layered media: Applied Geophysics (Book series in Russian), 91(1), 47–53.

    Google Scholar 

  • Margrave, G. F., 2001, Numerical methods of exploration seismology with algorithms in Matlab: The University of Calgary, Calgary.

    Google Scholar 

  • May, B. T., and Straley, D. K., 1979, Higher-order moveout spectra: Geophysics, 44(7), 1193–1207.

    Article  Google Scholar 

  • Michaelsen, B. H., 2002, Geochemical perspectives on the petroleum habitat of the Cooper and Eromanga Basins, central Australia: The University of Adelaide, Adelaide.

    Google Scholar 

  • Miller, R. D., 1992, Normal moveout stretch mute on shallow-reflection data: Geophysics, 57(11), 1502–1507.

    Article  Google Scholar 

  • Noah, J. T., 1996, NMO stretch and subtle traps: The Leading Edge, 15(5), 345–347.

    Article  Google Scholar 

  • Qadrouh, A. N., Carcione, J. M., Botelho, M. A. B., Harith, Z. Z. T., and Salime, A. M., 2014, On optimal NMO and generalised Dix equations for velocity determination and depth conversion: Journal of Applied Geophysics, 101, 136–141.

    Article  Google Scholar 

  • Ross, C. P., 1997, AVO and nonhyperbolic moveout: a practical example: First Break, 62(6), 43–48.

    Google Scholar 

  • Sain, K., and Kaila, K. L., 1994, Inversion of wide-angle seismic reflection times with damped least squares: Geophysics, 59(11), 1735–1744.

    Article  Google Scholar 

  • Shah, P. M., and Levin, F. K., 1973, Gross properties of time-distance curves: Geophysics, 38(4), 643–656.

    Article  Google Scholar 

  • Shatilo, A., and Aminzadeh, F., 2000, Constant normal–moveout (CNMO) correction: a technique and test results: Geophysical Prospecting, 48(3), 473–488.

    Google Scholar 

  • Song, H. J., Gao, Y. J., Zhang, J. H., and Yao, Z. X., 2016, Long-offset moveout for VTI using Padé approximation: Geophysics, 81(5), C219–C227.

    Article  Google Scholar 

  • Taner, M. T., and Koehler, F., 1969, Velocity spectradigital computer derivation and applications of velocity functions: Geophysics, 34(6), 859–881.

    Article  Google Scholar 

  • Taner, M. T., Treitel, S., and Al-Chalabi, M., 2005, A new travel time estimation method for horizontal strata: 75th Annual International Meeting, SEG, Expanded Abstracts, 2273–2276.

    Google Scholar 

  • Thore, P., de Bazelaire E., and Ray, M. P., 1994, The threeparameter equation: An efficient tool to enhance the stack: Geophysics, 59(2), 297–308.

    Google Scholar 

  • Tognarelli, A., Stucchi, E., Ravasio, A., and Mazzotti, A., 2013, High-resolution coherency functionals for velocity analysis: An application for subbasalt seismic exploration: Geophysics, 78(5), U53–U63.

    Google Scholar 

  • Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59(8), 1290–1304.

    Article  Google Scholar 

  • Tsvankin, I., and Thomsen, L., 1995, Inversion of reflection traveltimes for transverse isotropy: Geophysics, 60(4), 1095–1107.

    Article  Google Scholar 

  • Zhang, L., Rector, J. W., Hoversten, G. M., and Fomel, S., 2007, Split-step complex Padé-Fourier depth migration: Geophysical Journal International, 171(3), 1308–1313.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Alexey Stovas, Andrea Tognarelli, and anonymous reviewers for insightful suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hai Zhang.

Additional information

This research was supported by the National Natural Science Foundation of China (Nos. 41130418 and 41374061), the National Major Project of China (No. 2011ZX05008-006) and the Youth Innovation Promotion Association CAS (No. 2012054).

Song Han-Jie, received his PhD from the Institute of Geology and Geophysics, Chinese Academy of Sciences. His main research interests are the long-offset seismic data processing, velocity analysis, and NMO. Email: songhj@mail.iggcas.ac.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, HJ., Zhang, JH. & Yao, ZX. Normal moveout for long offset in isotropic media using the Padé approximation. Appl. Geophys. 13, 658–666 (2016). https://doi.org/10.1007/s11770-016-0587-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-016-0587-4

Keywords

Navigation