Skip to main content
Log in

Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: impacts of climate change and human activities

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Net primary productivity (NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude (i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors (i.e., temperature and precipitation) were the main driving factors occupied 13.6% (temperature) and 6.0% (precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens C D, 2012. Meteorology Today: an Introduction to Weather, Climate, and the Environment. Boston, Massachusetts: Cengage Learning, 138–147.

    Google Scholar 

  • Bondeau A, Kicklighter D W, Kaduk J et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 5(s1): 35–45. doi: 10.1046/j.1365-2486.1999.00005.x

    Article  Google Scholar 

  • Chen Fujun, Shen Yanjun, Li Qian, et al., 2011. Spatio-temporal variation analysis of ecological systems NPP in China in past 30 years. Scinentia Geographica Sinica, 31(11): 1409–1414. (in Chinese)

    Google Scholar 

  • Chen Li, Zhu Xigang, Li Xiaohu, 2016. Disparities of country economy at Yunnan Province in China based on the perspective of industrial structure. Scientia Geographica Sinica, 36(3): 384–392. (in Chinese)

    Google Scholar 

  • Christopher B F, James T R, Carolyn M M, 1995. Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 51(1): 74–88. doi: 10.1016/0034-4257(94)00066-V

    Article  Google Scholar 

  • Ciais P H, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533. doi: 10.1038/nature03972.

    Article  Google Scholar 

  • Cramer W, Kicklighter D W, Bondeau A et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology, 5(s1): 1–15. doi: 10.1046/j.1365-2486.1999.00009.x

    Article  Google Scholar 

  • Deng Wei, Fang Yiping, Tang Wei, 2013. The strategic effect and general directions of urbanization in mountain areas of china. Bulletin of the Chinese Academy of Science, 97(7): 253–263. (in Chinese)

    Google Scholar 

  • Du M Y, Kawashima S, Yonemura S et al., 2004. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41(3): 241–249. doi: 10.1016/j.gloplacha.2004.01.010

    Article  Google Scholar 

  • Evans J, Geerken R, 2004. Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57(4): 535–554. doi: 10.1016/S0140-1963(03)00121-6

    Article  Google Scholar 

  • Grosso S D, Parton W, Stohlgren T et al., 2008. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89(8): 2117–2126. doi: 10.1890/07-0850.1

    Article  Google Scholar 

  • Guo Jinming, 2014. Analysis on population distribution and influencing factors in Sichuan. Chengdu: Sichuan normal university. (in Chinese)

    Google Scholar 

  • Haxeltine A, Prentice I C, 1996. BIOME3: An equilibrium terrestrial biosphere model based on eco-physiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4): 693–709. doi: 10.1029/96GB02344

    Article  Google Scholar 

  • He Yunling, Zhang Yiping, 2006. A preliminary study on the spatial-temporal pattern of NPP in Yunnan Province. Journal of Mountain Science, 24(2): 193–201. (in Chinese)

    Google Scholar 

  • He Zhengjun, Lurong Yixi, Pianchu Cier et al., 2015. The cause and countermeasures of natural grassland degradation in Muli County. Caoyeyuxumu, 3: 54–56. (in Chinese)

    Google Scholar 

  • Heinsch F A, Reeves M, Votava P et al., 2003. User’s guide: GPP and NPP (MOD17A2/A3) products, NASA MODIS land algorithm, version 2.0: 1–57.

    Google Scholar 

  • Hijmans R J, Cameron S E, Parra J L et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965–1978. doi: 10.1002/joc.1276

    Article  Google Scholar 

  • Hutchinson M F, 2004. Anusplin version 4.3. Center for Resource and Environmental Studies. The Australian National University: Canberra Australia.

    Google Scholar 

  • Jeffrey A H, Gregory P A, James T R et al., 2002. Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16(2): 1v12. doi: 10.1029/2001GL013578

    Google Scholar 

  • Jin Yongchao, Zhu Yanpeng, Xin Lijuan et al., 2016. Changes of Ecosystem Service Functions of Dali Bai Autonomous Prefecture in Yunnan Province. Ecological Economy, 32(10): 130–134. (in Chinese)

    Google Scholar 

  • Joshi C, De Leeuw J, Skidmore A K et al., 2006. Remotely sensed estimation of forest canopy density: A comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation, 8(2): 84–95. doi: 10.1016/j.jag.2005.08.004

    Article  Google Scholar 

  • Kicklighter D W, Bondeau A, Schloss A L et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Global Change Biology, 5(s1): 16–24. doi: 10.1046/j.1365-2486.1999.00003.x

    Article  Google Scholar 

  • Li A N, Bian J H, Lei G B et al., 2012. Estimating the maximal light use efficiency for different vegetation through the CASA Model combined with time-series remote sensing data and ground measurements. Remote sensing, 4(12): 3857–3876. doi: 10.3390/rs4123857

    Article  Google Scholar 

  • Li Dingjia, 1988. The primary characteristics of flora in the Hengduan mountainous regions. Mountain research, 7(1): 147–152. (in Chinese)

    Google Scholar 

  • Lieth H, Whittaker R H, 1975. Primary Productivity of the Biosphere. Berlin Heidelberg New York: Springer-Verlag. doi: 10.1007/978-3-642-80913-2

    Book  Google Scholar 

  • Liu Fangyan, Li Kun, Sun Yongyu et al., 2010. Effects of climate on vegetaion recovery in dry-hot valleys of hengduan mountainous region in southwest china. Resources and Environment in the Yangtze Basin, 19(12): 1386–1391. (in Chinese)

    Google Scholar 

  • Liu Feng, Kan Aike, Li Guoming et al., 2012. A case study on Panzhihua: industry park ecologicalization promotes a sustainable development in western resources-based cities. Resources and industries, 14(1): 8–11. (in Chinese)

    Google Scholar 

  • Liu Jiyuan, Liu Mingliang, Deng Xiangzheng et al., 2002. The land use and land cover change database and its relative studies in China. Journal of Geographical Sciences, 12(3): 275–282. doi:10.1007/BF02837545.

    Article  Google Scholar 

  • Liu Lunhui, Yu Youde, Zhang Jianhua, 1985. Discussion upon the regularities of vegetational distribution in the Hengduan Mountains. Acta Botanica Yunnanica, 7(3): 323–335. (in Chinese)

    Google Scholar 

  • Liu Siyao, Lu Tao, Tang Bin et al., 2013. Spatial-temporal variations of net primary productivity of Sichuan vegetation based on CASA model. Journal of Sichuan agricultural university, 31(3): 269–282. (in Chinese)

    Google Scholar 

  • Mao Dehua, Wang Zongming, Wu Changshan et al., 2014. Examining forest net primary productivity dynamics and driving forces in northeastern china during 1982–2010. Chinese Geographical Science, 24(6): 631–646. doi: 10.1007/s11769-014-0662-9

    Article  Google Scholar 

  • McGuire A D, Melillo J M, Kicklighter D W et al., 1995. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. Journal of Biogeography, 22(4/5): 785–796. doi: 10.2307/2845980

    Article  Google Scholar 

  • Nayak R K, Patel N R, Dadhwal V K, 2010. Estimation and analysis of terrestrial net primary productivity over India by remote sensing driven terrestrial biosphere model. Environmental Monitoring & Assessment, 170(1–4): 195–213. doi: 10.1007/s10661-009-1226-9

    Article  Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science.1082750

    Article  Google Scholar 

  • Peng J, Shen H, Wu W et al., 2016. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: a case study in Beijing City, China. Landscape Ecology, 31(5): 1077–1092. doi: 10.1007/s10980-015-0319-9

    Article  Google Scholar 

  • Piao S L, Fang, J Y, He J S, 2006a. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 74(1): 253–267. doi: 10.1007/s10584-005-6339-8.

    Article  Google Scholar 

  • Piao S L, Mohammat A, Fang J Y, et al., 2006b. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4): 340–348. doi: 10.1016/j.gloenvcha.2006.02.002

    Article  Google Scholar 

  • Plochl M, Cramer W, 1995. Possible impacts of global warming on tundra and boreal forest ecosystems: comparison of some biogeochemical models. Journal of Biogeography, 22(4/5): 775–783. doi: 10.2307/2845979

    Article  Google Scholar 

  • Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi: 10.1029/93GB02725

    Article  Google Scholar 

  • Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4): 399–429. doi: 10.2307/1941899

    Article  Google Scholar 

  • Ruimy A, Kergoat L, Bondeau A et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biology, 5(s1): 56–64. doi: 10.1046/j.1365-2486.1999.00007.x

    Article  Google Scholar 

  • Sanderson E W, Jaiteh M, Levy M A et al., 2002. The Human Footprint and the Last of the Wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10): 891–904. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2

    Article  Google Scholar 

  • Semmartin M, Oyarzabal M, Loreti J et al., 2007. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology, 32(4): 416–428. doi: 10.1111/j.1442-9993.2007.01706.x

    Article  Google Scholar 

  • Sun Qingling, Li Baoling, Zhou Chenghu et al., 2017. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China. Journal of Geographical Sciences, 27(2): 161–182. doi: 10.1007/s11442-017-1370-z

    Article  Google Scholar 

  • Tao Bo, Li Kerang, Shao Xuemei et al., 2003. The temporal and spatial patterns of terrestrial net primary productivity in China. Journal of Geographical Sciences, 13(2): 163–171. doi: 10.1007/BF02837454

    Article  Google Scholar 

  • Tao F L, Yokozawa M, Zhang Z et al., 2005. Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties. Ecological Modelling, 183(4): 385–396. doi: 10.1016/j.ecolmodel.2004.08.023

    Article  Google Scholar 

  • Vitousek P M, Mooney H A, Lubchenco J et al., 1997. Human domination of Earth’s ecosystems. Science, 277(5325): 494–499. doi: 10.1126/science.277.5325.494

    Article  Google Scholar 

  • Wang J, Price K P, Rich P M, 2001. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing, 22(18): 3827–3844. doi: 10.1080/01431160010007033

    Article  Google Scholar 

  • Wang Qiang, Zhang Tingbin, Yi Guihua et al., 2016. Tempospatial variations and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014. Acta Ecologica Sinica, 37(9): 1–13. (in Chinese)

    Google Scholar 

  • White M A, Thornton P E, Running S W et al., 2000. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth interactions, 4(3): 1–85. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2

    Article  Google Scholar 

  • Wu Z T, Dijkstra P, Koch G W et al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927–942. doi: 10.1111/j.1365-2486.2010.02302.x

    Article  Google Scholar 

  • Xin Z B, Xu J X, Zheng W, 2008. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): impacts of climate changes and human activities. Science in China a Series D: Earth Sciences, 51(1): 67–78. doi: 10.1007/s11430-007-0137-2.

    Article  Google Scholar 

  • Xu Duanyang, Li Chunlei, Zhuang Dafang et al., 2011. Assessment of the relative role of climate change and human activities in desertification: A review. Journal of Geographical Sciences, 21(5): 926–936. doi: 10.1007/s11442-011-0890-1.

    Article  Google Scholar 

  • Xu Xiao, 2004. Response of net primary productivity (NPP) of Sichuan vegetations to global climate changes. Chinese Journal of Ecology, 23(6): 19–24. (in Chinese)

    Google Scholar 

  • Yang M C, Zhu W Q, Pan Y Z et al., 2005. Spatio-temporal distribution of net primary productivity along the northeast china transect and its response to climatic change from 1982 to 2000. IEEE International Geoscience & Remote Sensing Symposium, 2(56): 1318–1321. doi: 10.1109/IGARSS.2005.1525363

    Google Scholar 

  • Yang Qinye, Zheng Du, 1989. An outline of physic-geographic regionalization of the Hengduan mountainous region. Mountain Research, 7(1): 56–63. (in Chinese)

    Google Scholar 

  • Yuan Jinguo, Niu Zheng, Wang Chenli, 2006. Vegetation NPP distribution based on MODIS data and CASA model: a case studey of northern Hebei Province. Chinese Geographical Science, 16(4): 334–341. doi: 10.1007/s11769-006-0334-5

    Article  Google Scholar 

  • Yu Youde, Liu Lunhui, Zhang Jianhua, 1989. Vegetation regionalization of the Hengduan mountainous region. Mountain Research, 7(1): 47–55. (in Chinese)

    Google Scholar 

  • Zeng F W, Collatz J G, Pinzon E J et al., 2013. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales. Remote Sensing, 5(8): 3918–3950. doi: 10.3390/rs5083918.

    Article  Google Scholar 

  • Zhang F, Zhou G S, Wang Y H, 2008. Dynamics simulation of net primary productivity by a satellite data-driven CASA model in inner Mongolian typical sitppe, China. Journal of Plant Ecology, 32(4): 786–797. doi: 10.3773/j.issn.1005-264x.2008.04.007

    Google Scholar 

  • Zhang Yili, Qi Wei, Zhou Caiping et al., 2013. Spatial and temporal variability in net primary production (NPP) of alpline grassland on Tibetan Plateau from 1982 to 2009. Acta Geographica Sinica, 68(9): 1197–1211. (in Chinese)

    Google Scholar 

  • Zhou Y, Zhu Q, Chen J M et al., 2007. Observation and simulation of net primary productivity in Qilian Mountain, western China. Journal of Environmental Management, 85(3): 574–584. doi: 10.1016/j.jenvman.2006.04.024

    Article  Google Scholar 

  • Zhu W Q, Pan Y Z, Liu X et al., 2006a. Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change. Journal of Forestry Research, 17(2): 93–98. doi: 10.1007/s11676-006-0022-4

    Article  Google Scholar 

  • Zhu W Q, Pan Y Z, He H et al., 2006b. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin, 51(6): 457–463. doi:10.1007/s11434-006-0457-1.

    Article  Google Scholar 

  • Zhu Wenquan, Pan Yaozhong, Zhang Jinshui, 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 31(3): 413–424. (in Chinese)

    Article  Google Scholar 

  • Zhuo Ga, Li Xin, Luo Bu et al., 2010. Dynamical Analysis of Recent Vegetation Variation with Satellite Dataset in Tibet Region. Plateau Meteorology, 29(3): 563–571. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Peng.

Additional information

Foundation item: Under the auspices of National Key Basic Research Program of China (No. 2015CB452706), National Natural Science Foundation of China (No. 41401198, 41571527), Youth Talent Team Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (No. SDSQB-2015-01), Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2016332)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Peng, L., Liu, S. et al. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: impacts of climate change and human activities. Chin. Geogr. Sci. 27, 948–962 (2017). https://doi.org/10.1007/s11769-017-0895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0895-5

Keywords

Navigation