Skip to main content
Log in

A thin cloud removal method from remote sensing image for water body identification

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

In this paper, a thin cloud removal method was put forward based on the linear relationships between the thin cloud reflectance in the channels from 0.4 μm to 1.0 μm and 1.38 μm. Channels of 0.66 μm, 0.86 μm and 1.38 μm were chosen to extract the water body information under the thin cloud. Two study cases were selected to validate the thin cloud removal method. One case was applied with the Earth Observation System Moderate Resolution Imaging Spectroradiometer (EOS/MODIS) data, and the other with the Medium Resolution Spectral Imager (MERSI) and Visible and Infrared Radiometer (VIRR) data from Fengyun-3A (FY-3A). The test results showed that thin cloud removal method did not change the reflectivity of the ground surface under the clear sky. To the area contaminated by the thin cloud, the reflectance decreased to be closer to the reference reflectance under the clear sky after the thin cloud removal. The spatial distribution of the water body area could not be extracted before the thin cloud removal, while water information could be easily identified by using proper near infrared channel threshold after removing the thin cloud. The thin cloud removal method could improve the image quality and water body extraction precision effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman S A, Strabala K I, Menzel W P et al., 1998. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103(D24): 32141–32157. doi: 10.1029/1998JD200032

    Article  Google Scholar 

  • Barton I J, Bathols J M, 1989. Monitoring foods with AVHRR. Remote Sensing of Environment, 30: 89–94. doi: 10.1016/0034-4257(89)90050-3

    Article  Google Scholar 

  • Bryant R G, Rainey M P, 2002. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sensing of Environment, 82(2–3): 360–375. doi: 10.1016/S0034-4257(02)00053-6

    Article  Google Scholar 

  • Cai Y L, Sun G Q, Liu B Q, 2005. Mapping of water body in Poyang Lake from partial spectral unmixing of MODIS data. International Geoscience and Remote Sensing Symposium, 7: 4539–4540. doi: 10.1109/IGARSS.2005.1526675

    Google Scholar 

  • Chen P Y, Srinivasan R, Fedosejevs G et al., 2002. An automated cloud detection method for daily NOAA-14 data for Texas, USA. International Journal of Remote Sensing, 23(15): 2939–2950. doi: 10.1080/01431160110075631

    Article  Google Scholar 

  • Dong C H, Yang J, Yang Z D et al., 2009. An overview of a new chinese weather satellite FY-3A. Bulletin of the American Meteorological Society, 90: 1531–1544.

    Article  Google Scholar 

  • Feng C, Ma J W, Dai Q et al., 2004. An improved method for cloud removal in ASTER data change detection. IEEE International Geoscience and Remote Sensing Symposium, 5: 3387–3389. doi: 10.1109/IGARSS.2004.1370431

    Google Scholar 

  • Gao B C, Kaufman Y J, Han W et al., 1998. Correction of thin cirrus path radiance in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel. Journal of Geophysical Research, 103: 32169–32176

    Article  Google Scholar 

  • Gao B C, Li R R, 2000. Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects. Remote Sensing of Environment, 74(3): 494–502.

    Article  Google Scholar 

  • Huang Dapeng, Liu Chuang, Fang Huajun et al., 2008. Assessment of waterlogging risk in Lixiahe Region of Jiangsu Province based on AVHRR and MODIS image. Chinese Geographical Science, 18(2): 178–183. doi: 10.1007/s11769-008-0178-2

    Article  Google Scholar 

  • Jain S J, Saraf A J, Ajanta G et al., 2006. Flood inundation mapping using NOAA/AVHRR data. Water Resource Manage, 20(6): 949–959. doi: 10.1007/s11269-006-9016-4

    Article  Google Scholar 

  • Juan C, Jiménez-Muñoz, José A et al., 2010. Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sensing of Environment, 114(10): 2195–2210. doi: 10.1016/j.rse.2010.04.022

    Article  Google Scholar 

  • Justice C O, Vermote E, Townshend J R G et al., 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transctions on Geoscience and Remote Sensing, 36(4): 1228–1249. doi: 10.1109/36.701075

    Article  Google Scholar 

  • Liang S L, Fang H L, Chen M Z, 2001. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Transctions on Geoscience and Remote Sensing, 39(11): 2490–2498. doi: 10.1109/36.964986

    Article  Google Scholar 

  • Liang S, H Fang, Morisette J T et al., 2002. Atmospheric correction of Landsat ETM+ land surface imagery. II. Validation and Applications. IEEE Transctions on Geoscience and Remote Sensing, 40(12): 2736–2746. doi: 10.1109/TGRS.2002.807579

    Article  Google Scholar 

  • Liu Chuang, Ge Chenghui, 2000. Characteristics and application of remote sensed data from U.S. EOS-MODIS. Remote Sening Information, 3: 45–48. (in Chinese)

    Google Scholar 

  • Liu Yujie, Yang Zhongdong, 2004. MODIS Remote Sensing Information Processing Principle and Algorithm. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Ma Jianwen, Gu Xingfa, 2005. Chun Study of thin cloud removal method for CBERS-02 image. Science in China (Series E), 35: 89–86. (in Chinese)

    Google Scholar 

  • Peng Dingzhi, Guo Shenglian, Huang Yufang, 2004. Flood disaster monitoring and assessing system based on MODIS and GIS. Journal of Wuhan University of Hydraulic and Electric Engineering, 37: 7–11. (in Chinese)

    Google Scholar 

  • Richter R, 1996. A spatially adaptive fast atmospheric correction algorithm. International Journal of Remote Sensing, 17(6): 1201–1214. doi: 10.1080/01431169608949077

    Article  Google Scholar 

  • Sheng Y W, Su Y F, Xiao Q G, 1998. Challenging the cloud-contamination problem in flood monitoring with NOAA/AVHRR imagery. Photogrammetric Engineering and Remote Sensing, 64(3): 191–198.

    Google Scholar 

  • Sheng Y, Gong P, Xiao Q, 2001. Quantitative dynamic flood monitoring with NOAA AVHRR. International Journal of Remote Sensing, 22(9): 1709–1724. doi: 10.1080/01431160118481

    Google Scholar 

  • Tseng D C, Tseng H T, Chien C L, 2008. Automatic cloud removal from multi-temporal SPOT images. Applied Mathematics and Computation, 205(2): 584–600.

    Article  Google Scholar 

  • Yang Jun, Dong Chaohua, Lu Naimeng et al., 2009. FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteorologica Sinica, 67(4): 501–509. (in Chinese)

    Google Scholar 

  • Zhan X, Sohlberg R A, Townshend J R G et al., 2002. Detection of land cover changes using MODIS 250 m data. Remote Sensing of Environment, 83(1–2): 336–350. doi: 10.1016/S0034-4257(02)00081-0

    Article  Google Scholar 

  • Zhao Zhongming, Zhu Chongguang, 1996. Approach to removing cloud cover from satellite imagery. Remote Sensing of Environment China, 11(3): 195–199. (in Chinese)

    Google Scholar 

  • Zheng Wei, 2008. Multi-Source Remote Sensing Data Mining for Flood Monitoring Systematically—A Case Study in Huaihe River Basin. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. (in Chinese)

    Google Scholar 

  • Zheng W, Liu C, Zeng Z Y et al., 2007. A feasible atmospheric correction method to TM image. Journal of China University of Mining and Technology, 17(1): 112–115.

    Article  Google Scholar 

  • Zhu Xifeng, Wu Fang, Tao Chunkan, 2009. A new algorithm of cloud removing for optical images based on wavelet threshold theory. Acta Photonica Sinica, 38(12): 3312–3317. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Additional information

Foundation item: Under the auspices of National Nature Science Foundation of China (No. 40901231, 41101517)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Shao, J., Wang, M. et al. A thin cloud removal method from remote sensing image for water body identification. Chin. Geogr. Sci. 23, 460–469 (2013). https://doi.org/10.1007/s11769-013-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0601-1

Keywords

Navigation