Skip to main content
Log in

High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in applied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very important parameter to calculate FWI. However, RH interpolated from meteorological data may not be able to provide precise and confident values for areas between far separated stations. The principal objective of this study is to provide high-resolution RH for FWI using MODIS data. The precipitable water vapor (PW) can be retrieved from MODIS using split window techniques. Four-year-time-series (2000–2003) of 8-day mean PW and specific humidity (Q) of Peninsular Malaysia were analyzed and the statistic expression between PW and Q was developed. The root-mean-square-error (RMSE) of Q estimated by PW is generally less than 0.0004 and the correlation coefficient is 0.90. Based on the experiential formula between PW and Q, surface RH can be computed with combination of auxiliary data such as DEM and air temperature (T a). The mean absolute errors of the estimated RH in Peninsular Malaysia are less than 5% compared to the measured RH and the correlation coefficient is 0.8219. It is proven to be a simple and feasible model to compute high-resolution RH using remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chesters D C, Uccellini L W, Robinson W D, 1983. Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) ’split-window’ channels. Journal of Applied Meteorology, 22(5): 725–743.

    Article  Google Scholar 

  • Chrosciewicz Z, 1978. Slash and duff reduction by burning on clear-cut jack pine sites in central Saskatchewan. In: David R (ed.). Information Report of Northern Forest Research Centre. Edmonton: Canadian Forestry Service Press, NOR-X-200.

    Google Scholar 

  • Fraser R S, Kaufman Y J, 1985. The relative importance of aerosol scattering and absorption in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 23(5): 525–633.

    Google Scholar 

  • Frouin R, Deschamps P Y, Lecomte P, 1990. Determination from space of atmospheric total water vapor amounts by differential absorption near 940nm: theory and airborne verification. Journal of Applied Meteorology, 29(6): 448–460.

    Article  Google Scholar 

  • Fyles J W, Fyles I H, Feller M C, 1991. Forest floor characteristics and soil nitrogen availability on slash-burned sites in coastal British Columbia. Canadian Journal of Forest Research, 21(10): 1516–1522.

    Google Scholar 

  • Gao B-C, Goetz A F H, 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 95(4): 3549–3564.

    Article  Google Scholar 

  • Gao B-C, Kaufman Y J, 2003. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical Research, 108(13): 1–9.

    Google Scholar 

  • Han Kyung-Soo, Viau A A, Anctil F, 2003. High-resolution forest fire weather index computations using satellite remote sensing. Canadian Journal of Forest Research, 33(6): 1134–1143.

    Article  Google Scholar 

  • Ivan P Anderson, Ifran D Imanda, Muhnandar, 1999. Vegetation fires in Sumatra, Indonesia: A first look at vegetation indices and soil dryness indices in relation to fire occurrence. In: European Union Ministry of Forestry and Estate Crops (ed.). Forest Fire Prevention and Control Project Report. Palembang: Kanwil Kehutana dan Perkebunan Press, 2–4.

    Google Scholar 

  • Kaufman Y J, Gao B-C, 1992. Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 871–884.

    Article  Google Scholar 

  • Kaufman Y J, Tanre D, Remer L et al., 1997. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. Journal of Geophysical Research, 102(14): 17051–17068.

    Article  Google Scholar 

  • King M D, Kaufman Y J, Menzel W P et al., 1992. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 30(1): 2–27.

    Article  Google Scholar 

  • Lavoie N, 1997. Regionalisation des Dangers D’incendie de Foret par Teledetectio. Quebec: University Laval.

    Google Scholar 

  • Liu W Timothy, 1984. Remote sensing of near surface humidity over north pacific. In: Williamson (ed.). IEEE 1984 International Geoscience and Remote Sensing Symposium. New York: Institute of Electrical and Electronics Engineers, 115–118.

    Google Scholar 

  • McRae D J, 1980. Preliminary fuel combustion guidelines for prescribed burning in Ontario slash fuel complexes. In: Paulo M F (ed.). Information Report of Northern Forest Research Centre. Edmonton: Canadian Forestry Service Press, O-X-316.

    Google Scholar 

  • McRae D J, Lynham T J, Frech R J, 1994. Understroy prescribed burning in red pine and white pine. Forest Chronicle, 70(4): 395–401.

    Google Scholar 

  • Reagan J A, Thome K, Herman B et al., 1987. Water vapor measurements in the 0.94μm absorption band: calibration, measurements and data application. In: Ann Arbor (ed.). IEEE 1987 International Geoscience and Remote Sensing Symposium. New York: Institute of Electrical and Electronics Engineers, 63–67.

    Google Scholar 

  • Smith W, 1966. Note on the relationship between total precipitable water and surface dew point. Journal of Applied Meterorology, 5(5): 726–727.

    Article  Google Scholar 

  • Van Wagner C E, 1987. Development and structure of the Canadian Forest Fire Weather Index System. In: Davis K P (ed.). Forestry Technique Report. Edmonton: Canadian Forestry Service Press, 35

    Google Scholar 

  • Van Wagner C E, 1990. Six decades of forest fire science in Canada. Forest Chronicle, 66(3): 133–137.

    Google Scholar 

  • Viau A A, Vogt J V, Paquet F, 1996. Regionalisation and mapping of air temperature fields using NOAA AVHRR imagery. In: Lawson B D (ed.). Actes du 9e Congrés de l’Association québécoise de télédétection (AQT): La télédétection au sein de la géomatique. 30 April–3 May 1996, Quebec, Canada, CD-ROM.

  • Vogt J V, Viau A A, Paquet F, 1997. Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology, 17(14): 1559–1579.

    Article  Google Scholar 

  • Wang Yongsheng, 1987. Physical Meteorology. Beijing: China Meteorological Press, 82–86. (in Chinese)

    Google Scholar 

  • Yang Jingmei, Qiu Jinhua, 1996. The empirical Expressions of the relation between precipitaval water and ground water vapor pressure for some areas in China. Scientia Atmospherica Sinica, 20(5): 620–626. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Foundation item: Under the auspices of the Airborne Remote Sensing (MARS) Program of Malaysia (No. KSTAS/MACRES/T/2/2004)

Biography: PENG Guangxiong (1978–), male, a native of Yongzhou of Hunan Province, Ph.D. candidate, specialized in environmental change and application of remote sensing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, G., Li, J., Chen, Y. et al. High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia. Chin. Geograph.Sc. 16, 260–264 (2006). https://doi.org/10.1007/s11769-006-0260-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-006-0260-6

Keywords

Navigation