Skip to main content
Log in

Hyperuricemia is Associated with Increased Apo AI Fractional Catabolic Rates and Dysfunctional HDL in New Zealand Rabbits

  • Original Article
  • Published:
Lipids

Abstract

The potential cause–effect relationship between uric acid plasma concentrations and HDL functionality remains elusive. Therefore, this study aimed to explore the effect of oxonic acid (OA)-induced hyperuricemia on the HDL size distribution, lipid content of HDL subclasses, and apo AI turnover, as well as HDL functionality in New Zealand white rabbits. Experimental animals received OA 750 mg/kg/day by oral gavage during 21 days. The HDL-apo AI fractional catabolic rate (FCR) was determined by exogenous labeling with 125I, and HDL subclasses were determined by sequential ultracentrifugation and PAGE. Paraoxonase-1 activity (PON-1) and the effect of HDL on relaxation of aorta rings in vitro were determined as an indication of HDL functionality. Oxonic acid induced a sixfold increase of uricemia (0.84 ± 0.06 vs. 5.24 ± 0.12 mg/dL, P < 0.001), and significant decreases of triglycerides and phospholipids of HDL subclasses, whereas HDL size distribution and HDL-cholesterol remained unchanged. In addition, HDL-apo AI FCR was significantly higher in hyperuricemic rabbits than in the control group (0.03697 ± 0.0038 vs. 0.02605 ± 0.0017 h−1 respectively, P < 0.05). Such structural and metabolic changes were associated with lower levels of PON-1 activities and deleterious effects of HDL particles on endothelium-mediated vasodilation. In conclusion, hyperuricemia is associated with structural and metabolic modifications of HDL that result in impaired functionality of these lipoproteins. Our data strongly suggest that uric acid per se exerts deleterious effects on HDL that contribute to increase the risk of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C:

Cholesterol

CAD:

Coronary artery disease

FCR:

Fractional catabolic rate

HDL:

High-density lipoproteins

HU:

Hyperuricemia

OA:

Oxonic acid

PAGE:

Polyacrylamide gradient gel electrophoresis

PL:

Phospholipids

PR:

Production rate

Tg:

Triglycerides

References

  1. Yang T, Chu CH, Bai CH, You SL, Chou YC, Hwang LC, Chien KL, Su TC, Tseng CH, Sun CA (2012) Uric acid concentration as a risk marker for blood pressure progression and incident hypertension: a Chinese cohort study. Metabolism 61:1747–1755

    Article  CAS  PubMed  Google Scholar 

  2. Hare JM, Johnson RJ (2003) Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107:1951–1953

    Article  PubMed  Google Scholar 

  3. Ndrepepa G, Braun S, King L, Fusaro M, Tada T, Cassese S, Hadamitzky M, Haase HU, Schömig A, Kastrati A (2013) Uric acid and prognosis in angiography-proven coronary artery disease. Eur J Clin Invest 43:256–266

    Article  CAS  PubMed  Google Scholar 

  4. Meisinger C, Koenig W, Baumert J, Doring A (2008) Uric acid levels are associated with all-cause and cardiovascular disease mortality independent of systemic inflammation in men from the general population: the MONICA/KORA cohort study. Arterioscler Thromb Vasc Biol 28:1186–1192

    Article  CAS  PubMed  Google Scholar 

  5. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, Jaiteh LE, Han CL (2013) Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: a prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol 61:122–127

    Article  PubMed  Google Scholar 

  6. Ndrepepa G, Braun S, King L, Hadamitzky M, Haase HU, Birkmeier KA, Schömig A, Kastrati A (2012) Association of uric acid with mortality in patients with stable coronary artery disease. Metabolism 61:1780–1786

    Article  CAS  PubMed  Google Scholar 

  7. Meléndez-Ramírez G, Pérez-Méndez O, López-Osorio C, Kuri-Alfaro J, Espinola-Zavaleta N (2012) Effect of the treatment with allopurinol on the endothelial function in patients with hyperuricemia. Endocr Res 37:1–6

    Article  PubMed  Google Scholar 

  8. Liu Z, Chen T, Niu H, Ren W, Li X, Cui L, Li C (2016) The establishment and characteristics of rat model of atherosclerosis induced by hyperuricemia. Stem Cells Int 2016:1365257

    PubMed  Google Scholar 

  9. Lippi G, Montagnana M, Luca Salvagno G, Targher G, Cesare Guidi G (2010) Epidemiological association between uric acid concentration in plasma, lipoprotein(a), and the traditional lipid profile. Clin Cardiol 33:E76–E80

    Article  PubMed  Google Scholar 

  10. Zhang Y, Xu RX, Li S, Zhu CG, Guo YL, Sun J, Li JJ (2015) Lipoprotein subfractions partly mediate the association between serum uric acid and coronary artery disease. Clin Chim Acta 441:109–114

    Article  CAS  PubMed  Google Scholar 

  11. Carreón-Torres E, Juárez-Meavepeña M, Cardoso-Saldaña G, Gómez CH, Franco M, Fievet C, Luc G, Juárez-Oropeza MA, Pérez-Méndez O (2005) Pioglitazone increases the fractional catabolic and production rates of high-density lipoproteins apo AI in the New Zealand white rabbit. Atherosclerosis 181:233–240

    Article  PubMed  Google Scholar 

  12. Pérez-Méndez Ó, Pacheco HG, Martínez-Sánchez C, Franco M (2014) HDL-cholesterol in coronary artery disease risk: function or structure? Clin Chim Acta 429:111–122

    Article  PubMed  Google Scholar 

  13. García-Sánchez C, Torres-Tamayo M, Juárez-Meavepeña M, López-Osorio C, Toledo-Ibelles P, Monter-Garrido M, Cruz-Robles D, Carreón-Torres E, Vargas-Alarcón G, Pérez-Méndez O (2011) Lipid plasma concentrations of HDL subclasses determined by enzymatic staining on polyacrylamide electrophoresis gels in children with metabolic syndrome. Clin Chim Acta 412:292–298

    Article  PubMed  Google Scholar 

  14. López-Olmos V, Carreón-Torres E, Luna-Luna M, Flores-Castillo C, Martínez-Ramírez M, Bautista-Pérez R, Franco M, Sandoval-Zárate J, Roldán FJ, Aranda-Fraustro A, Soria-Castro E, Muñoz-Vega M, Fragoso JM, Vargas-Alarcón G, Pérez-Méndez O (2016) Increased HDL size and enhanced apo A–I catabolic rates are associated with doxorubicin-induced proteinuria in New Zealand white rabbits. Lipids 51:311–320

    Article  PubMed  Google Scholar 

  15. Toledo-Ibelles P, Franco M, Carreón-Torres E, Luc G, Tailleux A, Vargas-Alarcón G, Fragoso JM, Aguilar-Salinas C, Luna-Luna M, Pérez-Méndez O (2013) Normal HDL-apo AI turnover and cholesterol enrichment of HDL subclasses in New Zealand rabbits with partial nephrectomy. Metabolism 62:492–498

    Article  CAS  PubMed  Google Scholar 

  16. Soto-Miranda E, Carreón-Torres E, Lorenzo K, Bazán-Salinas B, García-Sánchez C, Franco M, Posadas-Romero C, Fragoso JM, López-Olmos V, Madero M, Rodriguez-Pérez JM, Vargas-Alarcón G, Pérez-Méndez O (2012) Shift of high-density lipoprotein size distribution toward large particles in patients with proteinuria. Clin Chim Acta 414:241–245

    Article  CAS  PubMed  Google Scholar 

  17. Kurra V, Vehmas T, Eräranta A, Jokihaara J, Pirttiniemi P, Ruskoaho H, Tokola H, Niemelä O, Mustonen J, Pörsti I (2015) Effects of oxonic acid-induced hyperuricemia on mesenteric artery tone and cardiac load in experimental renal insufficiency. BMC Nephrol 16:35

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sánchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, Franco M, Rodríguez-Iturbe B, Johnson RJ (2008) Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol 295:F1134–F1141

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toledo-Ibelles P, García-Sánchez C, Avila-Vazzini N, Carreón-Torres E, Posadas-Romero C, Vargas-Alarcón G, Pérez-Méndez O (2010) Enzymatic assessment of cholesterol on electrophoresis gels for estimating HDL size distribution and plasma concentrations of HDL subclasses. J Lipid Res 51:1610–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewis GF, Lamarche B, Uffelman KD, Heatherington AC, Honig MA, Szeto LW, Barrett PH (1997) Clearance of postprandial and lipolytically modified human HDL in rabbits and rats. J Lipid Res 38:1771–1778

    CAS  PubMed  Google Scholar 

  21. Rashid S, Uffelman KD, Barrett PH, Lewis GF (2002) Effect of atorvastatin on high-density lipoprotein apolipoprotein A–I production and clearance in the New Zealand white rabbit. Circulation 106:2955–2960

    Article  CAS  PubMed  Google Scholar 

  22. Brousseau ME, Santamarina-Fojo S, Zech LA, Bérard AM, Vaisman BL, Meyn SM, Powell D, Brewer HB Jr, Hoeg JM (1996) Hyperalphalipoproteinemia in human lecithin cholesterol acyltransferase transgenic rabbits. In vivo apolipoprotein A–I catabolism is delayed in a gene dose-dependent manner. J Clin Invest 97:1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huesca-Gómez C, Carreón-Torres E, Nepomuceno-Mejía T, Sánchez-Solorio M, Galicia-Hidalgo M, Mejía AM, Montaño LF, Franco M, Posadas-Romero C, Pérez-Méndez O (2004) Contribution of cholesteryl ester transfer protein and lecithin: cholesterol acyl transferase to HDL size distribution. Endocrin Res 30:403–415

    Article  Google Scholar 

  24. Gan KN, Smolen A, Eckerson HW, La Du BN (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19:100–106

    CAS  PubMed  Google Scholar 

  25. Bautista R, Carreón-Torres E, Luna-Luna M, Komera-Arenas Y, Franco M, Fragoso JM, López-Olmos V, Cruz-Robles D, Vargas-Barrón J, Vargas-Alarcón G, Pérez-Méndez O (2014) Early endothelial nitrosylation and increased abdominal adiposity in Wistar rats after long-term consumption of food fried in canola oil. Nutrition 30:1055–1060

    Article  CAS  PubMed  Google Scholar 

  26. Yaguas K, Bautista R, Quiroz Y, Ferrebuz A, Pons H, Franco M, Vaziri ND, Rodriguez-Iturbe B (2010) Chronic sildenafil treatment corrects endothelial dysfunction and improves hypertension. Am J Nephrol 31:283–291

    Article  CAS  PubMed  Google Scholar 

  27. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF (2007) Relationship of uric acid with progression of kidney disease. Am J Kidney Dis 50:239–247

    Article  CAS  PubMed  Google Scholar 

  28. Bergamini C, Cicoira M, Rossi A, Vassanelli C (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11:444–452

    Article  CAS  PubMed  Google Scholar 

  29. Khichar S, Choudhary S, Singh VB, Tater P, Arvinda RV, Ujjawal V (2016) Serum uric acid level as a determinant of the metabolic syndrome: a case control study. Diabetes Metab Syndr. doi:10.1016/j.dsx.2016.06.021

    PubMed  Google Scholar 

  30. Hogarth CA, Roy A, Ebert DL (2003) Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and rats. Comp Biochem Physiol B Biochem Mol Biol 135:219–229

    Article  PubMed  Google Scholar 

  31. Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23:2–7

    Article  PubMed  Google Scholar 

  32. Tapia E, Cristóbal M, García-Arroyo FE, Soto V, Monroy-Sánchez F, Pacheco U, Lanaspa MA, Roncal-Jiménez CA, Cruz-Robles D, Ishimoto T, Madero M, Johnson RJ, Sánchez-Lozada LG (2013) Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am J Physiol Renal Physiol 304:F727–F736

    Article  CAS  PubMed  Google Scholar 

  33. Glass CK, Pittman RC, Keller GA, Steinberg D (1983) Tissue sites of degradation of apoprotein A–I in the rat. J Biol Chem 258:7161–7167

    CAS  PubMed  Google Scholar 

  34. Holzer M, Birner-Gruenberger R, Stojakovic T, El-Gamal D, Binder V, Wadsack C, Heinemann A, Marsche G (2011) Uremia alters HDL composition and function. J Am Soc Nephrol 22:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho KH, Park SH, Park JE, Kim YO, Choi I, Kim JJ, Kim JR (2008) The function, composition, and particle size of high-density lipoprotein were severely impaired in an oliguric phase of hemorrhagic fever with renal syndrome patients. Clin Biochem 41:56–64

    Article  CAS  PubMed  Google Scholar 

  36. Deakin S, Leviev I, Gomaraschi M, Calabresi L, Franceschini G, James RW (2002) Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem 277:4301–4308

    Article  CAS  PubMed  Google Scholar 

  37. Mineo C, Shaul PW (2003) HDL stimulation of endothelial nitric oxide synthase: a novel mechanism of HDL action. Trends Cardiovasc Med 13:226–231

    Article  CAS  PubMed  Google Scholar 

  38. Fruhwürth S, Pavelka M, Bittman R, Kovacs WJ, Walter KM, Röhrl C, Stangl H (2013) High-density lipoprotein endocytosis in endothelial cells. World J Biol Chem 4:131–140

    PubMed  PubMed Central  Google Scholar 

  39. Pont F, Duvillard L, Florentin E, Gambert P, Vergès B (2002) High-density lipoprotein apolipoprotein A–I kinetics in obese insulin resistant patients. An in vivo stable isotope study. Int J Obes Relat Metab Disord 26:1151–1158

    Article  CAS  PubMed  Google Scholar 

  40. Ryu HM, Kim YJ, Oh EJ, Oh SH, Choi JY, Cho JH, Kim CD, Park SH, Kim YL (2016) Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells. J Cell Mol Med 20:2160–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kivelä AM, Dijkstra MH, Heinonen SE, Gurzeler E, Jauhiainen S, Levonen AL, Ylä-Herttuala S (2012) Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A. Atherosclerosis 225:335–340

    Article  PubMed  Google Scholar 

  42. Choi YJ, Shin HS, Choi HS, Park JW, Jo I, Oh ES, Lee KY, Lee BH, Johnson RJ, Kang DH (2014) Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest 94:1114–1125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by CONACYT, Project No. 132473 (to O. P.-M.). M. M.-R. was a recipient of a CONACYT grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Pérez-Méndez.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Ramírez, M., Flores-Castillo, C., Sánchez-Lozada, L.G. et al. Hyperuricemia is Associated with Increased Apo AI Fractional Catabolic Rates and Dysfunctional HDL in New Zealand Rabbits. Lipids 52, 999–1006 (2017). https://doi.org/10.1007/s11745-017-4301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4301-y

Keywords

Navigation