Skip to main content
Log in

Medium-Chain Enriched Diacylglycerol (MCE-DAG) Oil Decreases Body Fat Mass in Mice by Increasing Lipolysis and Thermogenesis in Adipose Tissue

  • Original Article
  • Published:
Lipids

Abstract

Medium chain fatty acid (MCFA) escapes the formation of chylomicrons in the small intestine, resulting in energy expenditure through beta-oxidation. Diacylglycerol (DAG) is susceptible to oxidation rather than being stored in the adipose tissue. This study was conducted to verify the effect of MCE-DAG oil on body fat mass in vivo. Male C57BL/6 mice were randomly assigned to four groups (n = 12) as follows: (1) normal diet (18% kcal from fat), (2) canola oil as a control (40% kcal from canola oil), (3) MCE-DAG10 (10% kcal from MCE-DAG + 30% kcal from canola oil), and (4) MCE-DAG20 (20% kcal from MCE-DAG + 20% kcal from canola oil). The body weight and fat mass of MCE-DAG20 group mice were decreased relative to those of control mice (P < 0.05 and P < 0.001, respectively). Serum triacylglycerol (TAG) was decreased in both MCE-DAG10 and MCE-DAG20 groups (P < 0.01 and P < 0.05, respectively). Hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) were increased in the MCE-DAG20 group relative to the control in white adipose tissue (WAT) (P < 0.05). Uncoupling protein 1 (UCP1) was also increased in the MCE-DAG20 group relative to the control in brown adipose tissue (BAT) (P < 0.05). In summary, MCE-DAG reduced body fat mass likely by stimulating lipolysis in WAT and thermogenesis in BAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl CoA carboxylase

ATGL:

Adipose triglyceride lipase

BAT:

Brown adipose tissue

DAG:

Diacylglycerol

DEXA:

Dual-energy X-ray absorptiometry

FAS:

Fatty acid synthase

GAPDH:

Glyceraldehyde-3-phophate dehydrogenase

HSL:

Hormone sensitive lipase

LC-TAG:

Long-chain triacylglycerol

LDL-C:

Low-density lipoprotein cholesterol

MAG:

Monoacylglycerol

MCE-DAG:

Medium-chain enriched diacylglycerol

MCFA:

Medium-chain fatty acid

MC-TAG:

Medium-chain triacylglycerol

MLC-TAG:

Medium- and long-chain triacylglycerol

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

SREBP1:

Sterol regulatory element binding protein 1

TAG:

Triacylglycerol

TC:

Total cholesterol

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32:1431–1437

    Article  CAS  Google Scholar 

  2. Seidell JC (2000) Obesity, insulin resistance and diabetes—a worldwide epidemic. Br J Nutr 83:S5–S8

    Article  CAS  PubMed  Google Scholar 

  3. Popkin BM (2001) The nutrition transition and obesity in the developing world. J Nutr 131:871S–873S

    CAS  PubMed  Google Scholar 

  4. Lee KT, Akoh CC (1998) Structured lipids: synthesis and applications. Food Rev Int 14:17–34

    Article  CAS  Google Scholar 

  5. Babayan VK (1987) Specialty lipids and their biofunctionality. Lipids 22:417–420

    Article  CAS  PubMed  Google Scholar 

  6. Marten B, Pfeuffer M, Schrezenmeir J (2006) Medium-chain triglycerides. Int Dairy J 16:1374–1382

    Article  CAS  Google Scholar 

  7. Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K (2001) Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr 131:2853–2859

    CAS  PubMed  Google Scholar 

  8. Liberato MV et al (2012) Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One 7:e36297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W (2003) Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes Res 11:734–744

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi H, Sekine S, Kojima K, Aoyama T (2008) The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr 17:320–323

    CAS  PubMed  Google Scholar 

  11. St-Onge M, Jones P (2003) Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes 27:1565–1571

    Article  CAS  Google Scholar 

  12. Seaton TB, Welle SL, Warenko MK, Campbell RG (1986) Thermic effect of medium-chain and long-chain triglycerides in man. Am J Clin Nutr 44:630–634

    CAS  PubMed  Google Scholar 

  13. Scalfi L, Coltorti A, Contaldo F (1991) Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. Am J Clin Nutr 53:1130–1133

    CAS  PubMed  Google Scholar 

  14. Lo SK, Tan CP, Long K, Yusoff MSA, Lai OM (2008) Diacylglycerol oil—properties, processes and products: a review. Food Bioprocess Technol 1:223–233

    Article  Google Scholar 

  15. Yasukawa T, Yasunaga K (2001) Nutritional functions of dietary diacylglycerols. J Oleo Sci 50:427–432

    Article  CAS  Google Scholar 

  16. Maki KC et al (2002) Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am J Clin Nutr 76:1230–1236

    CAS  PubMed  Google Scholar 

  17. Tada N, Watanabe H, Matsuo N, Tokimitsu I, Okazaki M (2001) Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin Chim Acta 311:109–117

    Article  CAS  PubMed  Google Scholar 

  18. Saito S, Tomonobu K, Hase T, Tokimitsu I (2006) Effects of diacylglycerol on postprandial energy expenditure and respiratory quotient in healthy subjects. Nutrition 22:30–35

    Article  CAS  PubMed  Google Scholar 

  19. Huge-Jensen B, Galluzzo DR, Jensen RG (1988) Studies on free and immobilized lipases from Mucor miehei. J Am Oil Chem Soc 65:905–910

    Article  CAS  Google Scholar 

  20. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  PubMed  Google Scholar 

  23. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  24. Papamandjaris AA, MacDougall DE, Jones PJ (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62:1203–1215

    Article  CAS  PubMed  Google Scholar 

  25. St-Onge MP, Jones PJ (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132:329–332

    CAS  PubMed  Google Scholar 

  26. Saito S, Yamaguchi T, Shoji K, Hibi M, Sugita T, Takase H (2010) Effect of low concentration of diacylglycerol on mildly postprandial hypertriglyceridemia. Atherosclerosis 213:539–544

    Article  CAS  PubMed  Google Scholar 

  27. Tomonobu K, Hase T, Tokimitsu I (2006) Dietary diacylglycerol in a typical meal suppresses postprandial increases in serum lipid levels compared with dietary triacylglycerol. Nutrition 22:128–135

    Article  CAS  PubMed  Google Scholar 

  28. Tada N et al (2005) Effects of diacylglycerol ingestion on postprandial hyperlipidemia in diabetes. Clin Chim Acta 353:87–94

    Article  CAS  PubMed  Google Scholar 

  29. Ai M et al (2007) Suppressive effects of diacylglycerol oil on postprandial hyperlipidemia in insulin resistance and glucose intolerance. Atherosclerosis 195:398–403

    Article  CAS  PubMed  Google Scholar 

  30. Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I (2002) Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice dietary diacylglycerol stimulates intestinal lipid metabolism. J Lipid Res 43:1312–1319

    CAS  PubMed  Google Scholar 

  31. Li CM, Kimura F, Endo Y, Maruyama C, Fujimoto K (2005) Deterioration of diacylglycerol-and triacylglycerol-rich oils during frying of potatoes. Eur J Lipid Sci Technol 107:173–179

    Article  CAS  Google Scholar 

  32. Heydinger JA, Nakhasi DK (1996) Medium chain triacylglycerols. J Food. Lipids 3:251–257

    Article  CAS  Google Scholar 

  33. Monsanto SP, Hintze KH, Ward RE, Larson DP, Lefevre M, Benninghoff AD (2016) The new total Western diet for rodents does not induce an overweight phenotype or alter parameters of metabolic syndrome in mice. Nutr Res 36:1031–1044

    Article  CAS  PubMed  Google Scholar 

  34. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299

    Article  CAS  PubMed  Google Scholar 

  35. Maljaars J, Romeyn EA, Haddenman E, Peters H, Masclee AA (2009) Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 89:1019–1024

    Article  CAS  PubMed  Google Scholar 

  36. Kasai M et al (2003) Effect of dietary medium-and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac J Clin Nutr 12:151–160

    CAS  PubMed  Google Scholar 

  37. Meng X, Zou D, Shi Z, Duan Z, Mao Z (2004) Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 39:37–41

    Article  CAS  PubMed  Google Scholar 

  38. Frayn KN, Arner P, Yki-Järvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 42:89–103

    Article  CAS  PubMed  Google Scholar 

  39. Schweiger M et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–44024

    Article  CAS  PubMed  Google Scholar 

  40. Kamphuis MM, Mela DJ, Westerterp-Plantenga MS (2003) Diacylglycerols affect substrate oxidation and appetite in humans. Am J Clin Nutr 77:1133–1139

    CAS  PubMed  Google Scholar 

  41. Murata M, Ide T, Hara K (1997) Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat. Br J Nutr 77:107–121

    Article  CAS  PubMed  Google Scholar 

  42. Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Redinger RN (2009) Fat storage and the biology of energy expenditure. Transl Res 154:52–60

    Article  CAS  PubMed  Google Scholar 

  44. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    CAS  PubMed  Google Scholar 

  45. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    Article  CAS  PubMed  Google Scholar 

  46. Kogure A et al (2002) Effects of caffeine on the uncoupling protein family in obese yellow KK mice. Clin Exp Pharmacol Physiol 29:391–394

    Article  CAS  PubMed  Google Scholar 

  47. Masuda Y et al (2003) Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol 95:2408–2415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwang-woong Go.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4166 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Choe, JH., Choi, J.H. et al. Medium-Chain Enriched Diacylglycerol (MCE-DAG) Oil Decreases Body Fat Mass in Mice by Increasing Lipolysis and Thermogenesis in Adipose Tissue. Lipids 52, 665–673 (2017). https://doi.org/10.1007/s11745-017-4277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4277-7

Keywords

Navigation