Skip to main content
Log in

Fatty Acids Have Different Adipogenic Differentiation Potentials in Stromal Vascular Cells Isolated from Abdominal Fat in Laying Hens

  • Original Article
  • Published:
Lipids

Abstract

This study was conducted to examine the effects of fatty acids (FA) with/without chicken serum (CS) on the expression of adipogenic transcripts and adipogenesis in chicken stromal vascular cells (SVC). In experiment 1, SVC were grown in DMEM containing 10% FBS (Control) and treated with 300 µM oleic acid (OLA) + FBS, linoleic acid (LNA) + FBS, palmitic acid (PAM) + FBS, or stearic acid (STA) + FBS for 48 h. In experiment 2, cells were grown in DMEM containing 5% CS and treated with 300 µM OLA (CS + OLA), PAM (CS + PAM), STA (CS + STA) or 200 µM LNA (CS + LNA) for 48 h. Adipogenesis was determined using Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. The proportion of OLA, PAM, or STA was increased (P < 0.05) in SVC grown in either FBS or CS with OLA, PAM or STA. Adipogenesis was induced in FBS + OLA, FBS + LNA, FBS + PAM, FBS + STA, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared to FBS. GPDH activity was significantly higher in FBS + OLA and FBS + LNA than one in FBS. Compared to FBS, the expression of FABP4 mRNA increased (P < 0.05) in FBS + OLA, FBS + LNA, or FBS + PAM, whereas that of C/EBPα, C/EBPβ, and ATGL increased (P < 0.05) in FBS + OLA or FBS + LNA cells. Expression of FABP4 and C/EBPβ mRNA was higher in CS, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared with (FBS, whereas the expression of ATGL and C/EBPα was higher in CS, CS + OLA, or CS + LNA than FBS cells. In conclusion, these results showed that FA have different potentials to induce adipogenesis, LNA is the most potent among the tested FA, and these potentials can be improved in the presence of CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CS:

Chicken serum

OLA:

Oleic acid

LNA:

Linoleic acid

PAM:

Palmitic acid

STA:

Stearic acid

hr:

Hour

CLA:

Conjugated linoleic acid

MSC:

Mesenchymal stem cell

FABP4:

Fatty acid binding protein 4

PPARγ2:

PPAR gamma2

C/EBPα:

CCAAT/enhancer binding protein alpha

C/EBPβ:

CCAAT/enhancer binding protein beta

ATGL:

Adipocyte triglyceride lipase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  1. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    Article  CAS  PubMed  Google Scholar 

  3. Regassa A, Kim WK (2013) Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol Int 7:961–971

    Article  Google Scholar 

  4. Matsubara Y, Sato K, Ishii H, Akiba Y (2005) Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comp Biochem Physiol A Mol Integr Physiol 141:108–115

    Article  PubMed  Google Scholar 

  5. Ding S, Mersmann HJ (2001) Fatty acids modulate porcine adipocyte differentiation d transcripts for transcription factors and adipocyte characteristic proteins. J Nutr Biochem 12:101–108

    Article  CAS  PubMed  Google Scholar 

  6. Grimaldi PA, Knobel SM, Whitesell R, Abumrad NA (1992) Induction of a P2 gene expression by non-metabolisable long-chain fatty acids. Proc Natl Acad Sci USA 89:10930–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amri EZ, Bertrand B, Ailhaud G, Grimaldi P (1991) Regulation of adipose cell differentiation. Fatty acids are inducers of the aP2 gene expression. J Lipid Res 32:1449–1456

    CAS  PubMed  Google Scholar 

  8. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci 94:4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci 94:4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gottlicher M, Demoz A, Svensson D, Tollet P, Berge RK, Gustafsson JA (1993) Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochem Pharmacol 46:2177–2184

    Article  CAS  PubMed  Google Scholar 

  11. Madsen L, Petersen RK, Kristiansen K (2005) Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta 1740:266–286

    Article  CAS  PubMed  Google Scholar 

  12. Wu YJ, Wright JT, Young CR, Cartwright AL (2000) Inhibition of chicken adipocyte differentiation by in vitro exposure to monoclonal antibodies against embryonic chicken adipocyte plasma membranes. Poult Sci 79:892–900

    Article  CAS  PubMed  Google Scholar 

  13. Wu L, Cai XX, Dong H, Jing W, Huang Y, Yang X, Wu Y, Lin Y (2010) Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARγ expression and phosphorylation. J Cell Mol Med 14:922–932

    Article  CAS  PubMed  Google Scholar 

  14. Ishizaki K, Takahashi N, Nawa T (2002) Phenotypic characteristics of adipocytes generated from Meckel’s chondrocytes in response to chicken serum in vitro. Cell Tissue Res 309:251–260

    Article  Google Scholar 

  15. Khuong TT, Jeong DK (2011) Adipogenic differentiation of chicken epithelial oviduct cells using only chicken serum. In Vitro Cell Dev Biol Anim 47:609–614

    Article  CAS  PubMed  Google Scholar 

  16. Cryer J, Woodhead BA, Cryer A (1987) The isolation and characterization of a putative adipocyte precursor cell type from the white adipose tissue of the chicken. Comp Biochem Physiol A Physiol 86:515–521

    Article  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  18. Suh M, Sauve Y, Murray C, Kang JX, Ma DL (2009) Supranormal electroretinogram (ERG) in fat-1 mice with retinas enriched in docosahexaenoic acid and n-3 very long chain fatty acids (VLCFA, C24-C36) Invest. Ophthalmol Vis Sci 50:4394–4401

    Article  Google Scholar 

  19. CCAC (2009) Guide to the care and use of experimental animals, vol 1, 2nd edn. CCAC, Ottawa

    Google Scholar 

  20. Statistical Analysis for Scientific Data (SAS). Version 9.4. SAS Institute Inc., Cary, NC, USA

  21. Yang JY, Della-Fera MA, Rayalam S, Park HJ, Ambati S, Hausman DB, Hartzell DL, Baile CA (2009) Regulation of adipogenesis by medium-chain fatty acids in the absence of hormonal cocktail. J Nutr Biochem 20:537–543

    Article  CAS  PubMed  Google Scholar 

  22. Dilzer A, Park Y (2012) Implication of conjugated linoleic acid in human health. Crit Rev Food Sci Nutr 52:488–513

    Article  CAS  PubMed  Google Scholar 

  23. Yeonhwa P, Karen J, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  Google Scholar 

  24. Evans M, Lin X, Odle J, McIntosh M (2002) Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr 132:450–455

    CAS  PubMed  Google Scholar 

  25. Kang K, Liu W, Albright KJ, Park Y, Pariza MW (2003) trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem Biophys Res Commun 303:795–799

    Article  CAS  PubMed  Google Scholar 

  26. Brandebourg TD, Hu CY (2005) Isomer-specific regulation of differentiating pig preadipocytes by conjugated linoleic acids. J Anim Sci 83:2096–2105

    Article  CAS  PubMed  Google Scholar 

  27. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  CAS  PubMed  Google Scholar 

  28. Yu Y, Correll P, Vander Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 1581:89–99

    Article  CAS  PubMed  Google Scholar 

  29. Brown JM, Boysen MS, Jensen SS, Morrison RF, Storkson J, Lea-Currie R (2003) Isomer-specific regulation of metabolism and PPAR gamma signaling by CLA in human preadipocytes. J Lipid Res 44:1287–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri EZ, Negrel R, Ailhaud G (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44:271–279

    Article  CAS  PubMed  Google Scholar 

  31. Weisiger RA (2002) Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol Cell Biochem 239:35–43

    Article  CAS  PubMed  Google Scholar 

  32. Chmurzyńska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  33. Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genom 5:170–191

    Article  CAS  Google Scholar 

  34. Zuo Y, Qiang L, Farmer SR (2006) Activation of CCAAT/Enhancer-binding Protein (C/EBP) α expression by C/EBPβ during adipogenesis requires a peroxisome proliferator-activated receptor-γ-associated repression of HDAC1 at the C/ebpα Gene Promoter. J Biol Chem 281:7960–7967

    Article  CAS  PubMed  Google Scholar 

  35. Hamm JK, Park BH, Farmer SR (2001) A role for C/EBPβ in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 276:18464–18471

    Article  CAS  PubMed  Google Scholar 

  36. Kershaw EE, Hamm JK, Verhagen AW, Peroni O, Katic M, Flier JS (2006) Adipose triglyceride lipase function, regulation by insulin, and comparison with adiponutrin. Diabetes 55:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zimmermann R, Strauss JS, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  PubMed  Google Scholar 

  38. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    Article  CAS  PubMed  Google Scholar 

  39. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  CAS  PubMed  Google Scholar 

  40. Lee K, Shin J, Latshaw JD, Suh Y, Serr J (2009) Cloning of adipose triglyceride lipase complementary deoxyribonucleic acid in poultry and expression of adipose triglyceride lipase during development of adipose in chickens. Poult Sci 88:620–630

    Article  CAS  PubMed  Google Scholar 

  41. Ahn J, Oh SA, Suh Y, Moeller SJ, Lee K (2013) Porcine G0/G1 switch gene 2 (G0S2) expressions is regulated during adipogenesis and short-term in vivo nutritional interventions. Lipids 48(3):209–218

    Article  CAS  PubMed  Google Scholar 

  42. Deiuliis JA, Shin J, Bae D, Azain MJ, Barb R, Lee K (2008) Developmental, hormonal, and nutritional regulation of porcine adipose triglyceride lipase (ATGL). Lipids 43(3):215–225

    Article  CAS  PubMed  Google Scholar 

  43. Lu L, Wang F, Chen X, Yuan H, Tian Y, Li J, Junda S, Zhengrong T, Yan F (2011) cDNA cloning, expression and regulation analysis of goose adipose triglyceride lipase (ATGL) gene. Can J Anim Sci 91:363–369

    Article  CAS  Google Scholar 

  44. Ding ST, Wang JC, Mersmann HI (2003) Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutri Resea. 23:1059–1069

    Article  CAS  Google Scholar 

  45. Regassa A, Kim WK (2015) Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genom 16:91–105

    Article  Google Scholar 

  46. Leveille GA, Romsos DR, Yeh Y, Ki O’Hea E (1975) Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci 54:1075–1093

    Article  CAS  PubMed  Google Scholar 

  47. Alvarenga RR, Zangeronimo MG, Pereira LJ, Rodrigues PB, Gomide EM (2011) Lipoprotein metabolism in poultry. World’s Poult Sci J 67:431–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Kyun Kim.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regassa, A., Suh, M., Datar, J. et al. Fatty Acids Have Different Adipogenic Differentiation Potentials in Stromal Vascular Cells Isolated from Abdominal Fat in Laying Hens. Lipids 52, 513–522 (2017). https://doi.org/10.1007/s11745-017-4261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4261-2

Keywords

Navigation