Skip to main content
Log in

Acute Fasting Induces Expression of Acylglycerophosphate Acyltransferase (AGPAT) Enzymes in Murine Liver, Heart, and Brain

  • Rapid Communication
  • Published:
Lipids

Abstract

During fasting, cells increase uptake of non-esterified fatty acids (NEFA) and esterify excess into phosphatidic acid (PtdOH), the common precursor of both triacylglycerols and phospholipids, using acylglycerophosphate acyltransferases/lysophosphatidic acid acyltransferases (AGPAT/LPAAT). Knowledge of the regulation of AGPAT enzymes is important for understanding fasting adaptations. Total RNA was isolated from liver, heart, and whole brain tissue of C57BL/6J mice fed ad libitum, or fasted for 16 h. Following fasting, induction of Agpat2, 3, 4, and 5 was observed in the liver, Agpat2 and 3 in heart tissue, and Agpat1, 2, and 3 in whole brain tissue. As a result, the relative abundance profile of the individual homologues within specific tissues was found to be significantly altered depending on the nutritive state of the animal. These data demonstrate tissue-specific effects of fasting on the regulation of different Agpat that are implicated in supporting unique downstream glycerolipid synthesis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AGPAT:

Acylglycerophosphate acyltransferase

LPAAT:

Lysophosphatidic acid acyltransferase

NEFA:

Non-esterified fatty acid

PtdOH:

Phosphatidic acid

RT-qPCR:

Real-time reverse transcription PCR

Triacylglycerol:

TAG

References

  1. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Campbell PJ, Carlson MG, Hill JO, Nurjhan N (1992) Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol 263:E1063–E1069

    CAS  PubMed  Google Scholar 

  3. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    CAS  PubMed  Google Scholar 

  4. Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T (2014) Glycerophosphate/acylglycerophosphate acyltransferases. Biology 3:801–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. New York, W H Freeman

    Google Scholar 

  6. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Investig 46:1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J, Viljanen T, Guiducci L, Haaparanta-Solin M, Nagren K, Solin O, Nuutila P (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59:2171–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bradley RM, Marvyn PM, Aristizabal Henao JJ, Mardian EB, George S, Aucoin MG, Stark KD, Duncan RE (2015) Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels. Biochim Biophys Acta 1851:1566–1576

    Article  CAS  PubMed  Google Scholar 

  9. Amplification efficiency of TaqMan® Gene Expression Assays, 2012, Life Technologies, p 6

  10. Pownall HJ (2001) Cellular transport of nonesterified fatty acids. J Mol Neurosci 16:109–115

    Article  CAS  PubMed  Google Scholar 

  11. Glatz JF, van Nieuwenhoven FA, Luiken JJ, Schaap FG, van der Vusse GJ (1997) Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 57:373–378

    Article  CAS  PubMed  Google Scholar 

  12. Lu B, Jiang YJ, Zhou Y, Xu FY, Hatch GM, Choy PC (2005) Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart. Biochem J 385:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23

    Article  CAS  PubMed  Google Scholar 

  14. Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, Schaffer JE, Ory DS (2006) A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem 281:11082–11089

    Article  CAS  PubMed  Google Scholar 

  15. Guan HP, Goldstein JL, Brown MS, Liang G (2009) Accelerated fatty acid oxidation in muscle averts fasting-induced hepatic steatosis in SJL/J mice. J Biol Chem 284:24644–24652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryu MH, Sohn HS, Heo YR, Moustaid-Moussa N, Cha YS (2005) Differential regulation of hepatic gene expression by starvation versus refeeding following a high-sucrose or high-fat diet. Nutrition (Burbank, Los Angeles County, CA) 21:543–552

    Article  CAS  Google Scholar 

  17. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96:7473–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Narayan S, Flask CA, Kalhan SC, Wilson DL (2015) Hepatic fat during fasting and refeeding by MRI fat quantification. J Magn Reson Imaging 41:347–353

    Article  PubMed  Google Scholar 

  19. Marks KA, Marvyn PM, Henao JJ, Bradley RM, Stark KD, Duncan RE (2015) Fasting enriches liver triacylglycerol with n-3 polyunsaturated fatty acids: implications for understanding the adipose-liver axis in serum docosahexaenoic acid regulation. Genes Nutr 10:39

    Article  PubMed  PubMed Central  Google Scholar 

  20. Radding CM, Steinberg D (1960) Studies on the synthesis and secretion of serum lipoproteins by rat liver slices. J Clin Investig 39:1560–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Denton RM, Randle PJ (1967) Concentrations of glycerides and phospholipids in rat heart and gastrocnemius muscles. Effects of alloxan-diabetes and perfusion. Biochem J 104:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adams MG, Barer R, Joseph S, Om’Iniabohs F (1981) Fat accumulation in the rat heart during fasting. J Pathol 135:111–126

    Article  CAS  PubMed  Google Scholar 

  23. Lascano EC, Negroni JA, Depaoli JR (1981) Myocardial triglycerides increased by fasting. Effects of hypoxia on contractility and enzymatic release. Res Exp Med Z Gesamte Exp Med Einschl Exp Chir 179:43–51

    Article  CAS  Google Scholar 

  24. Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ (2014) Lipoprotein lipase activity is required for cardiac lipid droplet production. J Lipid Res 55:645–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bing RJ, Siegel A, Ungar I, Gilbert M (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16:504–515

    Article  CAS  PubMed  Google Scholar 

  26. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276

    Article  CAS  PubMed  Google Scholar 

  27. Wisneski JA, Gertz EW, Neese RA, Mayr M (1987) Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Investig 79:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267:3825–3831

    CAS  PubMed  Google Scholar 

  29. Mancuso DJ, Han X, Jenkins CM, Lehman JJ, Sambandam N, Sims HF, Yang J, Yan W, Yang K, Green K, Abendschein DR, Saffitz JE, Gross RW (2007) Dramatic accumulation of triglycerides and precipitation of cardiac hemodynamic dysfunction during brief caloric restriction in transgenic myocardium expressing human calcium-independent phospholipase A2gamma. J Biol Chem 282:9216–9227

    Article  CAS  PubMed  Google Scholar 

  30. Pietka TA, Sulkin MS, Kuda O, Wang W, Zhou D, Yamada KA, Yang K, Su X, Gross RW, Nerbonne JM, Efimov IR, Abumrad NA (2012) CD36 protein influences myocardial Ca2+ homeostasis and phospholipid metabolism: conduction anomalies in CD36-deficient mice during fasting. J Biol Chem 287:38901–38912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han X, Cheng H, Mancuso DJ, Gross RW (2004) Caloric restriction results in phospholipid depletion, membrane remodeling, and triacylglycerol accumulation in murine myocardium. Biochemistry 43:15584–15594

    Article  CAS  PubMed  Google Scholar 

  32. Blomqvist G, Thorell JO, Ingvar M, Grill V, Widen L, Stone-Elander S (1995) Use of R-beta-[1-11C]hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans. Am J Physiol 269:E948–E959

    CAS  PubMed  Google Scholar 

  33. Hamilton JA, Hillard CJ, Spector AA, Watkins PA (2007) Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci 33:2–11

    Article  CAS  PubMed  Google Scholar 

  34. Singh S, Gupta N (1984) Effects of various oils and of starvation on the lipid metabolism in brain. Z Ernährungswiss 23:276–282

    Article  CAS  PubMed  Google Scholar 

  35. Agarwal AK, Sukumaran S, Cortes VA, Tunison K, Mizrachi D, Sankella S, Gerard RD, Horton JD, Garg A (2011) Human 1-acylglycerol-3-phosphate O-acyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2(−/−) gene lipodystrophic mice. J Biol Chem 286:37676–37691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Angela Wagler and Jean Flanagan for expert assistance in animal care. This work was supported by grants to RED from the Canada Foundation for Innovation – Leader’s Opportunity Fund and Ontario Research Fund (Project#30259), and a Discovery Grant (#418213-2012) from the Natural Sciences and Engineering Research Council (NSERC) of Canada. RMB is the recipient of an NSERC Doctoral Scholarship (PGS-D). EBM was the recipient of an NSERC Master’s Scholarship (PGS-M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin E. Duncan.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley, R.M., Mardian, E.B., Moes, K.A. et al. Acute Fasting Induces Expression of Acylglycerophosphate Acyltransferase (AGPAT) Enzymes in Murine Liver, Heart, and Brain. Lipids 52, 457–461 (2017). https://doi.org/10.1007/s11745-017-4251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4251-4

Keywords

Navigation