Skip to main content
Log in

Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist

  • Original Article
  • Published:
Lipids

Abstract

The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

CA:

Cholic acid

CDCA:

Chenodeoxycholic acid

CE:

Cholesteryl ester

DCA:

Deoxycholic acid

DGAT:

Diacylglycerol acyltransferase

DMEM:

Dulbecco’s minimum essential medium

CYP:

Cytochrome P450

FXR:

Farnesoid X receptor

HDCA:

Hyodeoxycholic acid

FAS:

Fatty acid synthase

LCーMS:

Liquid chromatographyーmass spectrometry

LXR:

Liver X receptor

MCA:

Muricholic acid

MUFA:

Monounsaturated fatty acid

PL:

Phospholipid

RXR:

Retinoid X receptor

SHP:

Small heterodimer partner

SCD:

Stearoyl-CoA desaturase

SMILE:

Small heterodimer partner-interacting leucine zipper protein

SREBP1c:

Sterol regulatory element-binding protein 1c

TG:

Triglyceride

UDCA:

Ursodeoxycholic acid

References

  1. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365

    Article  CAS  PubMed  Google Scholar 

  2. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368

    Article  CAS  PubMed  Google Scholar 

  3. Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuipers F, Bloks VW, Groen AK (2014) Beyond intestinal soap—bile acids in metabolic control. Nat Rev Endocrinol 10:488–498

    Article  CAS  PubMed  Google Scholar 

  5. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  CAS  PubMed  Google Scholar 

  6. Hoeke MO, Heegsma J, Hoekstra M, Moshage H, Faber KN (2014) Human FXR regulates SHP expression through direct binding to an LRH-1 binding site, independent of an IR-1 and LRH-1. PLoS One 9:e88011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen LL, Liu H, Peng J, Gan L, Lu L, Zhang Q, Li L, He F, Jiang Y (2011) Effects of farnesoid X receptor on the expression of the fatty acid synthetase and hepatic lipase. Mol Biol Rep 38:553–559

    Article  CAS  PubMed  Google Scholar 

  9. Bilz S, Samuel V, Morino K, Savage D, Choi CS, Shulman GI (2006) Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters. Am J Physiol Endocrinol Metab 290:E716–E722

    Article  CAS  PubMed  Google Scholar 

  10. Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, Lukivskaya OY, Kirko SN, Tauschel HD (2011) Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine- and choline-deficient diet. Hepatol Res 41:647–659

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud AA, Elshazly SM (2014) Ursodeoxycholic acid ameliorates fructose-induced metabolic syndrome in rats. PLoS One 9:e106993

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oh AR, Bae JS, Lee J, Shin E, Oh BC, Park SC, Cha JY (2016) Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice. BMB Rep 49:105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quintero P, Pizarro M, Solís N, Arab JP, Padilla O, Riquelme A, Arrese M (2014) Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion. J Physiol Biochem 70:667–674

    Article  CAS  PubMed  Google Scholar 

  14. Tsuchida T, Shiraishi M, Ohta T, Sakai K, Ishii S (2012) Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice. Metabolism 61:944–953

    Article  CAS  PubMed  Google Scholar 

  15. Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, Hoesel B, Fauler G, Stojakovic T, Einarsson C, Marschall HU, Trauner M (2015) Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 62:1398–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe S, Fujita K (2014) Dietary hyodeoxycholic acid exerts hypolipidemic effects by reducing farnesoid X receptor antagonist bile acids in mouse enterohepatic tissues. Lipids 49:963–973

    Article  CAS  PubMed  Google Scholar 

  17. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Bonde Y, Eggertsen G, Rudling M (2014) Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med 275:27–38

    Article  CAS  PubMed  Google Scholar 

  19. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235

    Article  CAS  PubMed  Google Scholar 

  20. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  21. Kunishima M, Kawachi C, Hioki K, Terao K, Tani S (2001) Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MM. Tetrahedron 57:1551–1558

    Article  CAS  Google Scholar 

  22. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 100:12027–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Leon MP, Carulli N, Loria P, Iori R, Zironi (1980) Cholesterol absorption during bile acid feeding. Effect of ursodeoxycholic acid (UDCA) administration. Gastroenterol 78:214–219

    Google Scholar 

  24. Uchida K, Akiyoshi T, Igimi H, Takase H, Nomura Y, Ishihara S (1991) Differential effects of ursodeoxycholic acid and ursocholic acid on the formation of biliary cholesterol crustals in mice. Lipids 26:526–530

    Article  CAS  PubMed  Google Scholar 

  25. Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and pro-resolving lipid mediators. Annu Rev Pathol 3:279–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lew JL, Zhao A, Yu J, Huang L, De Pedro N, Peláez F, Wright SD, Cui J (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279:8856–8861

    Article  CAS  PubMed  Google Scholar 

  27. Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ (2015) Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6:10166. doi:10.1038/ncomms10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nie Y-F, Hu J, Yan X-H (2015) Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ Sci B 16:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li T, Matozel M, Boehme S, Kong B, Nilsson LM, Guo G, Ellis E, Chiang JYL (2011) Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fedorowski T, Salen G, Calallilo A, Tint GS, Mosbach EH, Hall JC (1977) Metabolism of ursodeoxycholic acid in man. Gastroenterology 73:1131–1137

    CAS  PubMed  Google Scholar 

  31. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee JM, Gang GT, Kim DK, Kim YD, Koo SH, Lee CH, Choi HS (2014) Ursodeoxycholic acid inhibits liver X receptor α-mediated hepatic lipogenesis via induction of the nuclear corepressor SMILE. J Biol Chem 289:1079–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for the 2015 Co-operative Research Project (Ippan Kenkyu) from the Cooperative Research Project from the Joint Usage/Research Center (Joint Usage/Research Center for Science-Based Natural Medicine), Institute of Natural Medicine, University of Toyama in 2015 (to Y. I. and K. F.) and by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to S.W.) (Research Project Numbers: 23590873 and 26460903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Watanabe.

Ethics declarations

Conflict of interest

We have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, K., Iguchi, Y., Une, M. et al. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist. Lipids 52, 335–344 (2017). https://doi.org/10.1007/s11745-017-4242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4242-5

Keywords

Navigation