Skip to main content
Log in

Digestion of Ceramide 2-Aminoethylphosphonate, a Sphingolipid from the Jumbo Flying Squid Dosidicus gigas, in Mice

  • Original Article
  • Published:
Lipids

Abstract

Ceramide 2-aminoethylphosphonate (CAEP), a sphingophosphonolipid containing a carbon–phosphorus bond, is frequently found in marine organisms and has a unique triene type of sphingoid base in its structure. CAEP has not been evaluated as a food ingredient, although it is generally contained in Mollusca organisms such as squids and shellfish, which are consumed worldwide. In this study, we aimed to elucidate the effects of CAEP as a food component by evaluating the digestion of CAEP extracted from the skin of the jumbo flying squid Dosidicus gigas. Our results revealed that dietary CAEP was digested to free sphingoid bases via ceramides by the mouse small intestinal mucosa. At pH 7.2, CAEP was hydrolyzed more rapidly than the major mammalian sphingolipid sphingomyelin; however, the hydrolysis of CAEP was similar to that of sphingomyelin at pH 9.0. Thus, the digestion of CAEP may be catalyzed by alkaline spingomyelinase and other enzymes. Our findings provide important insights into the digestion of the dietary sphingophosphonolipid CAEP in marine foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEP:

2-Aminoethylphosphonate

CAEP:

Ceramide 2-aminoethylphosphonate

HPLC–ELSD:

High-performance liquid chromatography equipped with an evaporative light-scattering detector

LC–MS:

Liquid chromatography–mass spectrometry

OPA:

Ο-Phthalaldehyde

References

  1. Simon G, Rouser G (1967) Phospholipids of the sea anemone: quantitative distribution; absence of carbon-phosphorus linkages in glycerol phospholipids; structural elucidation of ceramide aminoethylphosphonate. Lipids 2:55–59

    Article  CAS  PubMed  Google Scholar 

  2. Moschidis MC (1984) Phosphonolipids. Prog Lipid Res 23:223–246

    Article  CAS  PubMed  Google Scholar 

  3. Mukhamedova KhS, Glushenkova AI (2000) Natural phosphonolipids. Chem Nat Comp 36:329–341

    Article  CAS  Google Scholar 

  4. Jin W, Rinehart KL, Jares-Erijman EA (1994) Ophidiacerebrosides: cytotoxic glycosphingolipids containing a novel sphingosine from a sea star. J Org Chem 59:144–147

    Article  CAS  Google Scholar 

  5. Ohashi Y, Tanaka T, Akashi S, Morimoto S, Kishimoto Y, Nagai Y (2000) Squid nerve sphingomyelin containing an unusual sphingoid base. J Lipid Res 41:1118–1124

    CAS  PubMed  Google Scholar 

  6. Saito H, Ishikawa S (2012) Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii. J Oleo Sci 61:547–564

    Article  CAS  PubMed  Google Scholar 

  7. Simon G, Rouser G (1969) Species variations in phospholipid class distribution of organs. II. Heart and skeletal muscle. Lipids 6:607–614

    Article  Google Scholar 

  8. Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124:702–712

    CAS  PubMed  Google Scholar 

  9. Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133:2777–2782

    CAS  PubMed  Google Scholar 

  10. Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51:1761–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan RD, Nyberg L, Nilsson A (1995) Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta 1259:49–55

    Article  PubMed  Google Scholar 

  12. Duan RD, Hertervig E, Nyberg L, Hauge T, Sternby B, Lillienau J, Farooqi A, Nilsson A (1996) Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci 41:1801–1806

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Liu F, Nilsson A, Duan RD (2004) Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol 287:G967–G973

    CAS  Google Scholar 

  14. Nilsson A (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164:575–584

    Article  CAS  PubMed  Google Scholar 

  15. Lundgren P, Nilsson A, Duan RD (2001) Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci 46:765–772

    Article  CAS  PubMed  Google Scholar 

  16. Mazzei JC, Zhou H, Brayfield BP, Hontecillas R, Bassaganya-Riera J, Schmelz EM (2011) Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor γ expression. J Nutr Biochem 22:1160–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Symolon H, Bushnev A, Peng Q, Ramaraju H, Mays SG, Allegood JC, Pruett ST, Sullards MC, Dillehay DL, Liotta DC, Merrill AH Jr (2011) Enigmol: a novel sphingolipid analogue with anticancer activity against cancer cell lines and in vivo models for intestinal and prostate cancer. Mol Cancer Ther 10:648–657

    Article  CAS  PubMed  Google Scholar 

  18. Duan J, Sugawara T, Hirose M, Aida K, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis. Exp Dermatol 21:448–452

    Article  CAS  PubMed  Google Scholar 

  19. Morifuji M, Oba C, Ichikawa S, Ito K, Kawahata K, Asami Y, Ikegami S, Itoh H, Sugawara T (2015) A novel mechanism for improvement of dry skin by dietary milk phospholipids: effect on epidermal covalently bound ceramides and skin inflammation in hairless mice. J Dermatol Sci 78:224–231

    Article  CAS  PubMed  Google Scholar 

  20. Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75:1516–1523

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Duan J, Sugawara T, Hirata T (2010) Rapid quantitative analysis of sphingolipids in seafood using HPLC with evaporative light-scattering detection: its application in tissue distribution of sphingolipids in fish. J Oleo Sci 59:509–513

    Article  CAS  PubMed  Google Scholar 

  23. Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82–91

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD (2011) Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice. J Lipid Res 52:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nilsson A (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176:339–347

    Article  CAS  PubMed  Google Scholar 

  26. Hori T, Arakawa I, Sugita M, Itasaka O (1968) Biochemistry of shellfish lipids. IX. Enzymatic hydrolysis of ceramide 2-aminoethylphosphonate and sphingoethanolamine. J Biochem 64:533–536

    Article  CAS  PubMed  Google Scholar 

  27. Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson A (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278:38528–38536

    Article  CAS  PubMed  Google Scholar 

  28. Wu J, Nilsson A, Jönsson BA, Stenstad H, Agace W, Cheng Y, Duan RD (2006) Intestinal alkaline sphingomyelinase hydrolyses and inactivates platelet-activating factor by a phospholipase C activity. Biochem J 394:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono K, Fredrickson DS (1964) The metabolism 14c-labeled cis AND trans isomers of octadecenoic and octadecadienoic acids. J Biol Chem 239:2482–2488

    CAS  PubMed  Google Scholar 

  30. Kaneda T (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41:391–418

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pettitt TR, Wakelam MJ (1998) Distinct phospholipase C-regulated signalling pathways in Swiss 3T3 fibroblasts induce the rapid generation of the same polyunsaturated diacylglycerols. FEBS Lett 427:371–376

    Article  CAS  PubMed  Google Scholar 

  32. Morifuji M, Higashi S, Oba C, Ichikawa S, Kawahata K, Yamaji T, Itoh H, Manabe Y, Sugawara T (2015) Milk phospholipids enhance lymphatic absorption of dietary sphingomyelin in lymph-cannulated rats. Lipids 50:987–996

    Article  CAS  PubMed  Google Scholar 

  33. Duan J, Ishida M, Aida K, Tsuduki T, Zhang J, Manabe Y, Hirata T, Sugawara T (2016) Dietary cerebroside from sea cucumber (Stichopus japonicus): absorption and effects on skin barrier and cecal short-chain fatty acids. J Agric Food Chem 64:7014–7021

    Article  CAS  PubMed  Google Scholar 

  34. Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68:2541–2546

    Article  CAS  PubMed  Google Scholar 

  35. Fuji A, Manabe Y, Aida K, Tsuduki T, Hirata T, Sugawara T (2017) Selective absorption of dietary sphingoid bases from the intestine via efflux by P-glycoprotein in rats. J Nutr Sci Vitaminol 63:45–51

    Google Scholar 

  36. Yeom M, Kim SH, Lee B, Han JJ, Chung GH, Choi HD, Lee H, Hahm DH (2012) Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear. J Dermatol Sci 67:101–110

    Article  CAS  PubMed  Google Scholar 

  37. Takatori R, Le Vu P, Iwamoto T, Satsu H, Totsuka M, Chida K, Shimizu M (2013) Effects of oral administration of glucosylceramide on gene expression changes in hairless mouse skin: comparison of whole skin, epidermis, and dermis. Biosci Biotechnol Biochem 77:1882–1887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Itonori and Dr. Saito for providing valuable materials. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 15J01143; a Grant-in-Aid for JSPS Research Fellow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Sugawara.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomonaga, N., Manabe, Y. & Sugawara, T. Digestion of Ceramide 2-Aminoethylphosphonate, a Sphingolipid from the Jumbo Flying Squid Dosidicus gigas, in Mice. Lipids 52, 353–362 (2017). https://doi.org/10.1007/s11745-017-4239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4239-0

Keywords

Navigation