Skip to main content
Log in

Plasma Phospholipid Fatty Acid Profile is Altered in Both Septic and Non-Septic Critically Ill: A Correlation with Inflammatory Markers and Albumin

  • Original Article
  • Published:
Lipids

Abstract

This study analyzes fatty acid (FA) composition in plasma lipids and erythrocyte phospholipids while comparing septic and non-septic critically ill patients. The aim was to describe impacts of infection and the inflammatory process. Patients with severe sepsis (SP, n = 13); age-, sex- and APACHE II score-matched non-septic critically ill with systemic inflammatory response syndrome (NSP, n = 13); and age-/sex-matched healthy controls (HC, n = 13) were included in a prospective case–control study during the first 24 h after admission to the intensive care unit. In both SP and NSP, lower n-6 polyunsaturated FA (PUFA) accompanied by higher proportions of monounsaturated FA (MUFA) in plasma phospholipids (PPL) was observed relative to HC. MUFA proportion was negatively correlated with n-6 PUFA, high density lipoprotein cholesterol (HDL-C), and albumin. MUFA was positively correlated with C-reactive protein (CRP), procalcitonin (PCT), interleukins (IL-6, IL-10), oxidized low density lipoproteins (ox-LDL), and conjugated dienes (CD). In both SP and NSP, inflammatory and lipid peroxidation markers were significantly higher—CRP (p < 0.001; p = 0.08), IL-6, IL-10, TNF-α (p < 0.01, p = 0.06), ox-LDL, and CD while total cholesterol, HDL-C, LDL-C albumin, and 20:4n-6/22:6n-3 and n-6/n-3 ratios were lower compared to HC. In conclusion, the changes in plasma lipid FA profile relate to the intensity of inflammatory and peroxidative response regardless of insult etiology. The lower MUFA and higher n-6 PUFA proportions in PPL were inversely correlated with cholesterol and albumin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

CD:

Conjugated dienes

CE:

Cholesteryl esters

CRP:

C-reactive protein

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

EPL:

Erythrocyte phospholipids

FA:

Fatty acid(s)

HC:

Healthy controls

HDL-C:

High-density lipoprotein cholesterol

IL:

Interleukin

LDL C:

Low-density lipoprotein cholesterol

LNA:

Linoleic acid

MUFA:

Monounsaturated fatty acid(s)

NSP:

Non-septic critically ill patients

OLA:

Oleic acid

Ox-LDL:

Oxidized-LDL

PCT:

Procalcitonin

PPL:

Plasma phospholipids

PUFA:

Polyunsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

SIRS:

Systemic inflammatory response syndrome

SP:

Septic patients

TAG:

Triacylglycerol(s)

TC:

Total cholesterol

TNF-α:

Tumor necrosis factor α

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  2. van Ruler O, Schultz MJ, Reitsma JB, Gouma DJ, Boermeester MA (2009) Has mortality from sepsis improved and what to expect from new treatment modalities: review of current insights. Surg Infect (Larchmt) 10:339–348

    Article  Google Scholar 

  3. Grune T, Berger MM (2007) Markers of oxidative stress in ICU clinical settings: present and future. Curr Opin Clin Nutr Metab Care 10:712–717

    Article  CAS  PubMed  Google Scholar 

  4. Roth E, Manhart N, Wessner B (2004) Assessing the antioxidative status in critically ill patients. Curr Opin Clin Nutr Metab Care 7:161–168

    Article  CAS  PubMed  Google Scholar 

  5. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795

    Article  CAS  PubMed  Google Scholar 

  7. Cree MG, Wolfe RR (2008) Postburn trauma insulin resistance and fat metabolism. Am J Physiol Endocrinol Metab 294:E1–E9

    Article  CAS  PubMed  Google Scholar 

  8. Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN (2014) Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg 259:814–823

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar KV, Rao SM, Gayani R, Mohan IK, Naidu MU (2000) Oxidant stress and essential fatty acids in patients with risk and established ARDS. Clin Chim Acta 298:111–120

    Article  CAS  PubMed  Google Scholar 

  10. Pratt VC, Tredget EE, Clandinin MT, Field CJ (2001) Fatty acid content of plasma lipids and erythrocyte phospholipids are altered following burn injury. Lipids 36:675–682

    Article  CAS  PubMed  Google Scholar 

  11. Prabha PS, Das UN, Ramesh G, Kumar KV, Kamalakar V (1991) Free radical generation, lipid peroxidation and essential fatty acids in patients with septicemia. Prostaglandins Leukot Essent Fatty Acids 42:61–65

    Article  CAS  PubMed  Google Scholar 

  12. Manzanares W, Langlois PL, Dhaliwal R, Lemieux M, Heyland DK (2015) Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit Care 19:167

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  14. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332

    Article  PubMed  Google Scholar 

  15. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  16. Rose HG, Oklander M (1965) Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res 6:428–431

    CAS  PubMed  Google Scholar 

  17. Tvrzicka E, Vecka M, Stankova B, Zak A (2002) Analysis of fatty acids in plasma lipoproteins ba gas chromatography-flame ionization detection. Quantitative aspects. Anal Chim Acta 465:337–350

    Article  CAS  Google Scholar 

  18. Ahotupa M, Ruutu M, Mantyla E (1996) Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 29:139–144

    Article  CAS  PubMed  Google Scholar 

  19. Rival T, Cinq-Frais C, Silva-Sifontes S et al (2013) Alteration of plasma phospholipid fatty acid profile in patients with septic shock. Biochimie 95:2177–2181

    Article  CAS  PubMed  Google Scholar 

  20. Dulhunty JM, Lipman J, Finfer S (2008) Does severe non-infectious SIRS differ from severe sepsis? Results from a multi-centre Australian and New Zealand intensive care unit study. Intensive Care Med 34:1654–1661

    Article  PubMed  Google Scholar 

  21. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2006) Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 34:1996–2003

    Article  CAS  PubMed  Google Scholar 

  22. Vavrova L, Rychlikova J, Mrackova M, Novakova O, Zak A, Novak F (2015) Increased inflammatory markers with altered antioxidant status persist after clinical recovery from severe sepsis: a correlation with low HDL cholesterol and albumin. Clin Exp Med 16:557–569

    Article  PubMed  Google Scholar 

  23. Chiarla C, Giovannini I, Giuliante F et al (2010) Severe hypocholesterolemia in surgical patients, sepsis, and critical illness. J Crit Care 25:361

    Article  PubMed  Google Scholar 

  24. Kumaraswamy SB, Linder A, Akesson P, Dahlback B (2012) Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Crit Care 16:R60

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bonville DA, Parker TS, Levine DM et al (2004) The relationships of hypocholesterolemia to cytokine concentrations and mortality in critically ill patients with systemic inflammatory response syndrome. Surg Infect (Larchmt) 5:39–49

    Article  Google Scholar 

  26. Gordon BR, Parker TS, Levine DM et al (2001) Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 29:1563–1568

    Article  CAS  PubMed  Google Scholar 

  27. Novak F, Vavrova L, Kodydkova J et al (2010) Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med 10:21–25

    Article  CAS  PubMed  Google Scholar 

  28. Fraunberger P, Schaefer S, Werdan K, Walli AK, Seidel D (1999) Reduction of circulating cholesterol and apolipoprotein levels during sepsis. Clin Chem Lab Med 37:357–362

    Article  CAS  PubMed  Google Scholar 

  29. Feingold KR, Marshall M, Gulli R, Moser AH, Grunfeld C (1994) Effect of endotoxin and cytokines on lipoprotein lipase activity in mice. Arterioscler Thromb 14:1866–1872

    Article  CAS  PubMed  Google Scholar 

  30. Cetinkaya A, Erden A, Avci D et al (2014) Is hypertriglyceridemia a prognostic factor in sepsis? Ther Clin Risk Manag 10:147–150

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamolz LP, Andel H, Mittlbock M et al (2003) Serum cholesterol and triglycerides: potential role in mortality prediction. Burns 29:810–815

    Article  PubMed  Google Scholar 

  32. Cao J, Schwichtenberg KA, Hanson NQ, Tsai MY (2006) Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin Chem 52:2265–2272

    Article  CAS  PubMed  Google Scholar 

  33. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuliaviene I, Gulbinas A, Cremers J et al (2013) Fatty acids of erythrocyte membrane in acute pancreatitis patients. World J Gastroenterol 19:5678–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Orr SK, Butler KL, Hayden D, Tompkins RG, Serhan CN, Irimia D (2015) Gene expression of proresolving lipid mediator pathways is associated with clinical outcomes in trauma patients. Crit Care Med 43:2642–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das UN (2013) Is sepsis a pro-resolution deficiency disorder? Med. Hypotheses 80:297–299

    Article  CAS  Google Scholar 

  37. Gutteridge JM, Mitchell J (1999) Redox imbalance in the critically ill. Br Med Bull 55:49–75

    Article  CAS  PubMed  Google Scholar 

  38. Behnes M, Brueckmann M, Liebe V et al (2008) Levels of oxidized low-density lipoproteins are increased in patients with severe sepsis. J Crit Care 23:537–541

    Article  CAS  PubMed  Google Scholar 

  39. Quinlan GJ, Lamb NJ, Evans TW, Gutteridge JM (1996) Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit Care Med 24:241–246

    Article  CAS  PubMed  Google Scholar 

  40. Das UN (2013) n-3 fatty acids, gamma-linolenic acid, and antioxidants in sepsis. Crit Care 17:312

    Article  PubMed  PubMed Central  Google Scholar 

  41. Warensjo E, Sundstrom J, Lind L, Vessby B (2006) Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am J Clin Nutr 84:442–448

    PubMed  Google Scholar 

  42. Yazu K, Yamamoto Y, Ukegawa K, Niki E (1996) Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. Lipids 31:337–340

    Article  CAS  PubMed  Google Scholar 

  43. Das U (2014) HLA-DR expression, cytokines and bioactive lipids in sepsis. Arch Med Sci 10:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Ministry of Health of the Czech Republic (Project No. IGA NT/13236-4/2012) and from Charles University in Prague (Project No. PRVOUK-P25/LF1/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Novak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, F., Borovska, J., Vecka, M. et al. Plasma Phospholipid Fatty Acid Profile is Altered in Both Septic and Non-Septic Critically Ill: A Correlation with Inflammatory Markers and Albumin. Lipids 52, 245–254 (2017). https://doi.org/10.1007/s11745-016-4226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4226-x

Keywords

Navigation