Skip to main content
Log in

Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae)

  • Original Article
  • Published:
Lipids

Abstract

Fat is the second most abundant component of the nutrient composition of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) that represents also an interesting source of PUFA, especially n-6 and n-3 fatty acids, involved in prevention of cardiovascular diseases. This study investigated the possibility of modifying the fat content and the FA composition of yellow mealworms through feeding and how this would be influenced by developmental stages, pupal sex, and generation with the future aim of applying this coleopteran as a diet supplement for human health. Growth rate and cumulative mortality percentage on the different feeding substrates were also evaluated to select the optimal conditions for a mass-raising of this insect species. Despite the different fat content in the six different breeding substrates used, T. molitor larvae and pupae contained a constant fat percentage (>34% in larvae and >30% in pupae). A similar total fat content was found comparing larvae and male and female pupae of the second generation to those of the first generation. On the contrary, FA composition differed both in larvae and pupae reared on the different feeding substrates. However, the exemplars reared on the diets based on 100% bread and 100% oat flour showed SFA, PUFA percentages, and an n-6/n-3 ratio more suitable for human consumption; the diet based on beer yeast, wheat flour, and oat flour resulted in a contemporary diet that most satisfied the balance between a fat composition of high quality and favorable growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acid(s)

FAME:

Fatty acid methyl ester(s)

FID:

Flame ionization detection

MUFA:

Monounsaturated fatty acid(s)

PUFA:

Polyunsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

UFA:

Unsaturated fatty acid(s)

References

  1. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security (No. 171, p. 187). Food and Agriculture Organization of the United Nations (FAO), Rome

  2. Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27

    Article  Google Scholar 

  3. Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823

    Article  CAS  PubMed  Google Scholar 

  4. Harris WS, Hustvedt BE, Hagen E, Green MH, Lu G, Drevon CA (1997) n-3 Fatty acids and chylomicron metabolism in the rat. J Lipid Res 38:503–515

    CAS  PubMed  Google Scholar 

  5. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, Beilin LJ (2000) Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr 71:1085–1094

    CAS  PubMed  Google Scholar 

  6. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  7. Manerba A, Vizzardi E, Metra M, Dei Cas L (2010) n-3 PUFAs and cardiovascular disease prevention. Future Cardiol 6:343–350

    Article  CAS  PubMed  Google Scholar 

  8. Hwang D (2000) Fatty acids and immune responses—a new perspective in searching for clues to mechanism. Annu Rev Nutr 20:431–456

    Article  CAS  PubMed  Google Scholar 

  9. Montori VM, Farmer A, Wollan PC, Dinneen SF (2000) Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care 23:1407–1415

    Article  CAS  PubMed  Google Scholar 

  10. Delarue J, LeFoll C, Corporeau C, Lucas D (2004) n-3 Long chain polyunsaturated fatty acids: a nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod Nutr Dev 44:289–29911

    Article  CAS  PubMed  Google Scholar 

  11. Calon F, Cole G (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fat Acids 77:287–293

    Article  CAS  Google Scholar 

  12. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  13. Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33

    Article  CAS  Google Scholar 

  14. Morales-Ramos JA, Rojas MG, Shelby KS, Coudron TA (2015) Nutritional value of pupae versus larvae of Tenebrio molitor (Coleoptera: Tenebrionidae) as food for rearing Podisus maculiventris (Heteroptera: Pentatomidae). J Econ Entomol 109:564–571

  15. St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Irving S (2007) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquac Soc 38:309–313

    Article  Google Scholar 

  16. Chen X, Feng Y, Chen Z (2009) Common edible insects and their utilization in China. Entomol Res 39:299–303

    Article  Google Scholar 

  17. van Broekhoven S, Oonincx DG, van Huis A, van Loon JJ (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 73:1–10

    Article  PubMed  Google Scholar 

  18. Finke MD (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285

    Article  CAS  Google Scholar 

  19. Ravzanaadii N, Kim SH, Choi WH, Hong SJ, Kim NJ (2012) Nutritional value of mealworm, Tenebrio Molitor as food source. Int J Ind Entomol 25:93–98

    Google Scholar 

  20. Cotton RT (1963) Pests of stored grain and grain products. Burgess, Minneapolis

    Google Scholar 

  21. Tzompa-Sosa DA, Yi L, van Valenberg HJ, van Boekel MA, Lakemond CM (2014) Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int 62:1087–109422

    Article  CAS  Google Scholar 

  22. Siemianowska E, Kosewska A, Aljewicz M, Skibniewska KA, Polak-Juszczak L, Jarocki A, Jedras M (2013) Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric Sci 4:287–291

    Google Scholar 

  23. Bhattacharya AK, Ameel JJ, Waldbauer GP (1970) A method for sexing living pupal and adult yellow mealworms. Ann Entomol Soc Am 63:1783

    Article  Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  25. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  26. Sanchez-Avila N, Mata-Granados JM, Ruiz-Jimenez J, Luque de Castro MD (2009) Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum. J Chromatogr A 1216:6864–6872

    Article  CAS  PubMed  Google Scholar 

  27. Rumpold BA, Schlüter O (2015) Insect-based protein sources and their potential for human consumption: nutritional composition and processing. Anim Front 5:20–24

    Google Scholar 

  28. Veldkamp T, Van Duinkerken G, Van Huis A, Lakemond CMM, Ottevanger E, Bosch G, van Boekel T (2012) Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study (report 638). Wageningen UR Livestock Research, Lelystad

    Google Scholar 

  29. Ghaly AE, Alkoaik FN (2009) The yellow mealworm as a novel source of protein. Am J Agric Biol Sci 4:319–331

    Article  Google Scholar 

  30. Ramos-Elorduy J, González EA, Hernández AR, Pino JM (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95:214–220

    Article  PubMed  Google Scholar 

  31. Raksakantong P, Meeso N, Kubola J, Siriamornpun S (2010) Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Int 43:350–355

    Article  CAS  Google Scholar 

  32. Blásquez JRE, Moreno JMP, Camacho VHM (2012) Could grasshoppers be a nutritive meal. Food Nutr Sci 3:164–175

    Article  Google Scholar 

  33. Ramos-Elorduy J, Neto EC, Pino JM, Correa MSC, Garcia-Figueroa J, Zetina DH (2007) Knowledge about useful entomofauna in the county of La Purisima Palmar de Bravo, Puebla State, Mexico. Biotemas 20:121–134

    Google Scholar 

  34. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilby AR (1965) Lipids and their metabolism in insects. Annu Rev Entomol 10:141–160

    Article  CAS  Google Scholar 

  36. Stanley-Samuelson DW, Dadd RH (1983) Long-chain polyunsaturated fatty acids patterns of occurrence in insects. J Food Sci Technol 13:549–558

    CAS  Google Scholar 

  37. Dadd RH (1983) Essential fatty acids: insects and vertebrates compared. In: Mittler TE, Dadd RH (eds) In metabolic aspects of lipid nutrition in Insects. Westview, Boulder, pp 107–147

    Google Scholar 

  38. Fraenkel G, Blewett M (1947) Linoleic acid and arachidonic acid in the metabolism of two insects, Ephestia kuehniella (Lep.) and Tenebrio molitor (Col.). Biochem J 41:475–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kleber ME, Delgado GE, Lorkowski S, März W, von Schacky C (2016) Omega-3 fatty acids and mortality in patients referred for coronary angiography. The Ludwigshafen risk and cardiovascular health study. Atherosclerosis 252:175–181

    Article  CAS  PubMed  Google Scholar 

  40. Morales-Ramos JA, Rojas MG, Shapiro-llan DI, Tedders WL (2010) Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets. J Entomol Sci 45:75–9041

    Article  Google Scholar 

  41. Fraenkel G (1950) The nutrition of the mealworm, Tenebrio molitor L: (Tenebrionidae, Coleoptera). Physiol Zool 23:92–108

    Article  CAS  PubMed  Google Scholar 

  42. Livingstone KM, Lovegrove JA, Givens DI (2012) The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: evidence from human intervention studies. Nutr Res Rev 25:193–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research carried out under the project “The insects and prevention cardiovascular diseases-INSECT CARD” funded by the Tuscany Region-Public Call for Research Projects in the Nutraceutical Industry. Executive Decree No. 4741 of 21 October 2014; No. 5418 of 17 November 2014. We thank Iuni Margaret Trist PhD for helping with the manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Dreassi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreassi, E., Cito, A., Zanfini, A. et al. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 52, 285–294 (2017). https://doi.org/10.1007/s11745-016-4220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4220-3

Keywords

Navigation