Skip to main content
Log in

New Role of Hispidulin in Lipid Metabolism: PPARα Activator

  • Original Article
  • Published:
Lipids

Abstract

Hispidulin is a naturally occurring flavonoid isolated from a traditional Chinese medicinal herb, Saussurea involucrata. In this study, the regulating role of hispidulin on the mRNA expression level of enzymes involved in lipid metabolism was examined in vitro and in vivo. Moreover, the in vivo lipid-modulating effect of hispidulin was compared with that of fenofibrate, a classical PPARα agonist. Our results in present study demonstrated that hispidulin can directly bind to and activate PPARα as an agonist and thus modulate the downstream lipid-metabolizing genes. Moreover, hispidulin could attenuate dyslipidemia in high fat diet induced dyslipidemia rat model. Although further studies are needed, this study provided evidence for the potential use of hispidulin in dyslipidemia management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PPARα:

Peroxisome proliferator-activated receptor alpha

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

FA:

Fatty-acid

LBD:

Ligand biding domain

Acsl 1:

Acyl-CoA synthetase 1

CPT1α:

Carnitine palmitoyltransferase 1α

Acat1:

Acetyl-CoA acetyltransferase 1

Acad1:

Acyl-coenzyme A dehydrogenase 1

HMGCS2:

HMG-CoA synthase 2

Acox1:

Acyl-CoA oxidase 1

Ech1:

Enoyl coenzyme a hydratase 1

EHHADH:

Enoyl-CoA, 3-hydroxyacyl CoA Dehydrogenase

Fasn:

Fatty acid synthase

Acaca:

Acetyl-CoA carboxylase 1

Elovl3:

Elongation of very long chain fatty acids 3

Lipe:

Hormone-sensitive lipase

Pnpla2:

Adipose triglyceride lipase

n-3 PUFAs:

N-3 polyunsaturated FA

References

  1. Berk PD, Verna EC (2016) Nonalcoholic fatty liver disease: lipids and insulin resistance. Clin Liver Dis 20:245–262

    Article  PubMed  Google Scholar 

  2. Alam S, Mustafa G, Alam M, Ahmad N (2016) Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol 7:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  3. Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    Article  CAS  PubMed  Google Scholar 

  4. Duval C, Chinetti G, Trottein F, Fruchart JC, Staels B (2002) The role of PPARs in atherosclerosis. Trends Mol Med 8:422–430

    Article  CAS  PubMed  Google Scholar 

  5. Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    Article  CAS  PubMed  Google Scholar 

  6. Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, Richter EA, Kiens B (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288:E133–E142

    Article  CAS  PubMed  Google Scholar 

  7. Kim S, Shin HJ, Kim SY, Kim JH, Lee YS, Kim DH, Lee MO (2004) Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARalpha. Mol Cell Endocrinol 220:51–58

    Article  CAS  PubMed  Google Scholar 

  8. Goldenberg I, Benderly M, Goldbourt U (2008) Update on the use of fibrates: focus on bezafibrate. Vasc Health Risk Manag 4:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T (1998) Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273:29577–29585

    Article  CAS  PubMed  Google Scholar 

  10. Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ (2011) PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr 141:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Way TD, Lee JC, Kuo DH, Fan LL, Huang CH, Lin HY, Shieh PC, Kuo PT, Liao CF, Liu H, Kao JY (2010) Inhibition of epidermal growth factor receptor signaling by Saussurea involucrata, a rare traditional Chinese medicinal herb, in human hormone-resistant prostate cancer PC-3 cells. J Agric Food Chem 58:3356–3365

    Article  CAS  PubMed  Google Scholar 

  12. Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, Xu Q (2008) Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J Ethnopharmacol 120:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Kavvadias D, Sand P, Youdim KA, Qaiser MZ, Rice-Evans C, Baur R, Sigel E, Rausch WD, Riederer P, Schreier P (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 142:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan RX, Lu H, Wolfender JL, Yu TT, Zheng WF, Yang L, Gafner S, Hostettmann K (1999) Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Med 65:64–67

    Article  CAS  PubMed  Google Scholar 

  15. Nagao T, Abe F, Kinjo J, Okabe H (2002) Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol Pharm Bull 25:875–879

    Article  CAS  PubMed  Google Scholar 

  16. Chen YT, Zheng RL, Jia ZJ, Ju Y (1990) Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med 9:19–21

    Article  PubMed  Google Scholar 

  17. Bourdillat B, Delautier D, Labat C, Benveniste J, Potier P, Brink C (1988) Mechanism of action of hispidulin, a natural flavone, on human platelets. Prog Clin Biol Res 280:211–214

    CAS  PubMed  Google Scholar 

  18. Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M (2014) The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway. Cell Biochem Biophys

  19. Zhou R, Wang Z, Ma C (2013) Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem Biophys

  20. Nepal M, Choi HJ, Choi BY, Yang MS, Chae JI, Li L, Soh Y (2013) Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-kappaB and NFATc1 pathways. Eur J Pharmacol 715:96–104

    Article  CAS  PubMed  Google Scholar 

  21. Ferrandiz ML, Bustos G, Paya M, Gunasegaran R, Alcaraz MJ (1994) Hispidulin protection against hepatotoxicity induced by bromobenzene in mice. Life Sci 55:PL145–PL150

    Article  CAS  PubMed  Google Scholar 

  22. Xiao-feng Jin, Jie Qian, and Lu Y-h (2011) The role of hepatoprotective effect of a flavonoid-rich extract of Salvia plebeia R.Br. On carbon tetrachloride-induced acute hepatic injury in mice. J Med Plant Res 5:6

  23. Yuan LP, Chen FH, Ling L, Dou PF, Bo H, Zhong MM, Xia LJ (2008) Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. J Ethnopharmacol 116:539–546

    Article  CAS  PubMed  Google Scholar 

  24. Lu YF, Xu YY, Jin F, Wu Q, Shi JS, Liu J (2014) Icariin is a PPARalpha activator inducing lipid metabolic gene expression in mice. Molecules 19:18179–18191

    Article  PubMed  Google Scholar 

  25. Jain MR, Giri SR, Trivedi C, Bhoi B, Rath A, Vanage G, Vyas P, Ranvir R, Patel PR (2015) Saroglitazar, a novel PPARalpha/gamma agonist with predominant PPARalpha activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models. Pharmacol Res Perspect 3:e00136

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hsu MH, Savas U, Griffin KJ, Johnson EF (2001) Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor alpha in HepG2 cells. J Biol Chem 276:27950–27958

    Article  CAS  PubMed  Google Scholar 

  27. Qiu LX, Chen T (2015) Novel insights into the mechanisms whereby isoflavones protect against fatty liver disease. World J Gastroenterol 21:1099–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dowman JK, Armstrong MJ, Tomlinson JW, Newsome PN (2011) Current therapeutic strategies in non-alcoholic fatty liver disease. Diabetes Obes Metab 13:692–702

    Article  CAS  PubMed  Google Scholar 

  29. Atif M, Ali I, Hussain A, Hyder SV, Niaz B, Khan FA, Maalik A, Farooq U (2015) Pharmacological assessment of hispidulin–a natural bioactive flavone. Acta Pol Pharm 72:829–842

    CAS  PubMed  Google Scholar 

  30. Gao H, Xie J, Peng J, Han Y, Jiang Q, Han M, Wang C (2015) Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1alpha. Exp Cell Res 332:236–246

    Article  CAS  PubMed  Google Scholar 

  31. Petrescu AD, Huang H, Martin GG, McIntosh AL, Storey SM, Landrock D, Kier AB, Schroeder F (2013) Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARalpha-regulated beta-oxidative enzymes. Am J Physiol Gastrointest Liver Physiol 304:G241–G256

    Article  CAS  PubMed  Google Scholar 

  32. McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, Kier AB, Schroeder F (2013) Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice. Lipids 48:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krammer J, Digel M, Ehehalt F, Stremmel W, Fullekrug J, Ehehalt R (2011) Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci 8:599–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi L, Shi L, Zhang H, Hu Z, Wang C, Zhang D, Song G (2013) Oxymatrine ameliorates non-alcoholic fatty liver disease in rats through peroxisome proliferator-activated receptor-alpha activation. Mol Med Rep 8:439–445

    PubMed  Google Scholar 

  35. Xie WD, Wang H, Zhang JF, Li JN, Can Y, Qing L, Kung HF, Zhang YO (2011) Enhanced peroxisomal beta-oxidation metabolism in visceral adipose tissues of high-fat diet-fed obesity-resistant C57BL/6 mice. Exp Ther Med 2:309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang J, Zhang Y, Zhou Y, Zhang Z, Xie Z, Zhang J, Wan X (2013) Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J Agric Food Chem 61:8565–8572

    Article  CAS  PubMed  Google Scholar 

  37. Lin HC, Chen YF, Hsu WH, Yang CW, Kao CH, Tsai TF (2012) Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model. Cancer Prev Res 5:952–962

    Article  CAS  Google Scholar 

  38. Quan HY, Kim Do Y, Kim SJ, Jo HK, Kim GW, Chung SH (2013) Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway. Biochem Pharmacol 85:1330–1340

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, Yang QM, Hu HJ, Yang L, Yang YB, Chou GX, Wang ZT (2014) Bioactive diterpenoids and flavonoids from the aerial parts of Scoparia dulcis. J Nat Prod 77:1594–1600

    Article  CAS  PubMed  Google Scholar 

  40. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 23:351–363

    Article  CAS  PubMed  Google Scholar 

  41. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R (2013) Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58:1941–1952

    Article  CAS  PubMed  Google Scholar 

  42. Yu H, Li C, Yang J, Zhang T, Zhou Q (2016) Berberine is a potent agonist of peroxisome proliferator activated receptor alpha. Front Biosci (Landmark Ed) 21:1052–1060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xu, J. New Role of Hispidulin in Lipid Metabolism: PPARα Activator. Lipids 51, 1249–1257 (2016). https://doi.org/10.1007/s11745-016-4200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4200-7

Keywords

Navigation