Skip to main content
Log in

Fatty Acid de Novo Synthesis in Adult Intrauterine Growth-Restricted Offspring, and Adult Male Response to a High Fat Diet

  • Original Article
  • Published:
Lipids

Abstract

Intrauterine growth restriction (IUGR) with rapid catch-up growth leads to adult obesity and insulin resistance. We have previously shown that IUGR male rats demonstrated increased de novo fatty acid synthesis in the subcutaneous (SC) fat, but not the visceral fat, during the nursing period prior to the onset of obesity. Young IUGR females do not exhibit the same increase. We further hypothesized that in male IUGR offspring, de novo synthesis is a programmed intrinsic effect that persists to adulthood and does not suppress in response to a high fat diet. We measured fatty acid de novo synthesis in IUGR adult males (6 months) using deuterium-enriched drinking water as a stable isotope tracer, then further studied the response after consumption of an isocaloric high fat diet. Baseline de novo synthesis in adult females was also studied at age 9 months. Males demonstrated increased baseline de novo synthesis in both SC fat and visceral fat. Correspondingly, SC and visceral fat protein expression of lipogenic enzymes acetyl-coA carboxylase-α (ACCα) and fatty acid synthase were upregulated. After the isocaloric high fat diet, de novo synthesis was suppressed such that no differences remained between the two groups, although, IUGR SC fat demonstrated persistently increased lipogenic protein expression. In contrast, de novo synthesis among adult females is not impacted in IUGR. In conclusion, enhancement of male IUGR SC fat de novo synthesis appears to be an early consequence of metabolic programming, whereas enhancement in visceral fat appears to be a later consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IUGR:

Intrauterine growth restriction

SC:

Subcutaneous

ACCα:

Acetyl-coA carboxylase alpha

FASN:

Fatty acid synthase

SREBP1:

Sterol regulatory element-binding protein 1

ChREBP:

Carbohydrate response element binding protein

GC/MS:

Gas chromatography/mass spectrometry

FNS:

Fractional new synthesis

FABP4:

Fatty acid binding protein 4

References

  1. Martin JA, Hamilton BE, Osterman MJ, Curtin SC, Matthews TJ (2015) Births: final data for 2013. Natl Vital Stat Rep 64:1–65

    Google Scholar 

  2. Ortigosa Rocha C, Bittar RE, Zugaib M (2010) Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstet Gynecol Int 2010:231842

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP (1999) Obesity at the age of 50 years in men and women exposed to famine prenatally. Am J Clin Nutr 70:811–816

    CAS  PubMed  Google Scholar 

  4. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    Article  CAS  PubMed  Google Scholar 

  5. Desai M, Gayle D, Babu J, Ross MG (2005) Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol 288:R91–R96

    Article  CAS  PubMed  Google Scholar 

  6. Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD (2002) Increased hepatic peroxisome proliferator-activated receptor-γ coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology 143:2486–2490

    CAS  PubMed  Google Scholar 

  7. Desai M, Ross MG (2011) Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med 29:237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, McKnight RA, Desai M, Moyer-Mileur LJ, Lane RH (2010) Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARgamma2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev 86:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yee JK, Lee WN, Han G, Ross MG, Desai M (2011) Organ-specific alterations in fatty acid de novo synthesis and desaturation in a rat model of programmed obesity. Lipids Health Dis 10:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olefsky JM (2008) Fat talks, liver and muscle listen. Cell 134:914–916

    Article  CAS  PubMed  Google Scholar 

  12. Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J (1996) Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 97:2081–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright JD, Wang CY, Kennedy-Stephenson J, Ervin RB (2003) Dietary intake of ten key nutrients for public health, United States: 1999–2000. Adv Data 334:1–4

    Google Scholar 

  14. Belkacemi L, Chen CH, Ross MG, Desai M (2009) Increased placental apoptosis in maternal food restricted gestations: role of the Fas pathway. Placenta 30:739–751

    Article  CAS  PubMed  Google Scholar 

  15. Lee WN, Bassilian S, Lim S, Boros LG (2000) Loss of regulation of lipogenesis in the Zucker diabetic (ZDF) rat. Am J Physiol Endocrinol Metab 279:E425–E432

    CAS  PubMed  Google Scholar 

  16. Desai M, Gayle D, Han G, Ross MG (2007) Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci 14:329–337

    Article  PubMed  Google Scholar 

  17. Lowenstein JM, Brunengraber H, Wadke M (1975) Measurement of rates of lipogenesis with deuterated and tritiated water. Methods Enzymol 35:279–287

    Article  CAS  PubMed  Google Scholar 

  18. Lee WN, Byerley LO, Bergner EA, Edmond J (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458

    Article  CAS  PubMed  Google Scholar 

  19. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320

    Article  CAS  PubMed  Google Scholar 

  20. Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG (2014) Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 211:237 e213

    Article  Google Scholar 

  21. Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, Joglekar C, Kellingray S (2003) Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord 27:173–180

    Article  CAS  PubMed  Google Scholar 

  22. Bassilian S, Ahmed S, Lim SK, Boros LG, Mao CS, Lee W-NP (2002) Loss of regulation of lipogenesis in the Zucker diabetic rat. II. Changes in stearate and oleate synthesis. Am J Physiol Endocrinol Metab 282:E507–E513

    Article  CAS  PubMed  Google Scholar 

  23. Brunengraber DZ, McCabe BJ, Kasumov T, Alexander JC, Chandramouli V, Previs SF (2003) Influence of diet on the modeling of adipose tissue triglycerides during growth. Am J Physiol Endocrinol Metab 285:E917–E925

    Article  CAS  PubMed  Google Scholar 

  24. Scifres CM, Chen B, Nelson DM, Sadovsky Y (2011) Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab 96:E1083–E1091

    Article  PubMed  PubMed Central  Google Scholar 

  25. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimomura I, Shimano H, Korn BS, Bashmakov Y, Horton JD (1998) Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J Biol Chem 273:35299–35306

    Article  CAS  PubMed  Google Scholar 

  27. Guberman C, Jellyman JK, Han G, Ross MG, Desai M (2013) Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol 209:262–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamdy O, Porramatikul S, Al-Ozairi E (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabet Rev 2:367–373

    Article  Google Scholar 

  29. Meyer LK, Ciaraldi TP, Henry RR, Wittgrove AC, Phillips SA (2013) Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2:217–226

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gerhard GS, Styer AM, Strodel WE, Roesch SL, Yavorek A, Carey DJ, Wood GC, Petrick AT, Gabrielsen J, Ibele A et al (2013) Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes (Lond) 38:371–378

    Article  CAS  Google Scholar 

  31. Desai M, Babu J, Ross MG (2007) Programmed metabolic syndrome: prenatal undernutrition and postweaning overnutrition. Am J Physiol Regul Integr Comp Physiol 293:R2306–R2314

    Article  CAS  PubMed  Google Scholar 

  32. Malo E, Saukko M, Santaniemi M, Hietaniemi M, Lammentausta E, Blanco Sequeiros R, Ukkola O, Kesaniemi YA (2013) Plasma lipid levels and body weight altered by intrauterine growth restriction and postnatal fructose diet in adult rats. Pediatr Res 73:155–162

    Article  CAS  PubMed  Google Scholar 

  33. Ozaki T, Nishina H, Hanson MA, Poston L (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ojeda NB, Grigore D, Robertson EB, Alexander BT (2007) Estrogen protects against increased blood pressure in post-pubertal female growth restricted offspring. Hypertension 50:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Stacy Behare and Linda Day for technical assistance with animal care. JKY received support from NIH K23 DK08324, the Clinical Scholar Award from the Pediatric Endocrine Society, and the UCLA CTSI (UL1TR000124). MD received support from NIH/NIDDK R01DK081756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer K. Yee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, J.K., Han, G., Vega, J. et al. Fatty Acid de Novo Synthesis in Adult Intrauterine Growth-Restricted Offspring, and Adult Male Response to a High Fat Diet. Lipids 51, 1339–1351 (2016). https://doi.org/10.1007/s11745-016-4199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4199-9

Keywords

Navigation