Skip to main content
Log in

Perilla Oil Reduces Fatty Streak Formation at Aortic Sinus via Attenuation of Plasma Lipids and Regulation of Nitric Oxide Synthase in ApoE KO Mice

  • Original Article
  • Published:
Lipids

Abstract

Consumption of n-3 polyunsaturated fatty acids (PUFA) is associated with a reduced incidence of atherosclerosis. Perilla oil (PO) is a vegetable oil rich in α-linolenic acid (ALA), an n-3 PUFA. In this study, antiatherogenic effects and related mechanisms of PO were investigated in atherosclerotic mice. Apolipoprotein E knockout (ApoE KO) mice (male, n = 27) were fed high-cholesterol and high-fat diets containing 10 % w/w lard (LD), PO, or sunflower oil (SO) for 10 weeks. Plasma triglyceride, total cholesterol, and low-density lipoprotein cholesterol concentrations reduced in the PO and SO groups compared to the concentrations in the LD group (P < 0.05). The PO group showed reduced fatty streak lesion size at the aortic sinus (P < 0.05) compared to the sizes in the LD and SO groups. A morphometric analysis showed enhancement of endothelial nitric oxide synthase expression and reduction of inducible nitric oxide synthase expression in the PO group compared to that in the LD group (P < 0.05). Furthermore, aortic protein expression of intercellular cell adhesion molecule 1 and vascular cell adhesion molecule 1 was diminished in the PO group compared to that in the LD and SO groups (P < 0.05). These findings suggested that PO inhibited the development of aortic atherosclerosis by improving the plasma lipid profile, regulating nitric oxide synthase, and suppressing the vascular inflammatory response in the aorta of ApoE KO mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

Avidin biotin complex

AI:

Atherogenic index

AIP:

Atherogenic index of plasma

ALA:

Alpha-linolenic acid (183n-3)

ApoE KO:

Apolipoprotein E knockout

CVD:

Cardiovascular disease

DAB:

Diaminobenzidine hydrochloride

DHA:

Docosahexaenoic acid (226n-3)

eNOS:

Endothelial nitric oxide synthase

EPA:

Eicosapentaenoic acid (205n-3)

HDL-C:

High-density lipoprotein cholesterol

ICAM-1:

Intercellular cell adhesion molecule 1

iNOS:

Inducible nitric oxide synthase

LD:

Lard

LDL-C:

Low-density lipoprotein cholesterol

LNA:

Linoleic acid (182n-6)

NF-kB:

Nuclear factor kB

NO:

Nitric oxide

PO:

Perilla oil

PUFA:

Polyunsaturated fatty acid(s)

ROS:

Reactive oxygen species

SO:

Sunflower oil

TC:

Total cholesterol

TAG:

Triacylglycerol(s)

TNF-α:

Tumor necrosis factor-α

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Massaro M, Scoditti E, Carluccio MA, de Caterina R (2008) Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostag Leukotr Ess 79:109–115

    Article  CAS  Google Scholar 

  2. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(Suppl):1505S–1519S

    CAS  PubMed  Google Scholar 

  3. Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    Article  CAS  PubMed  Google Scholar 

  4. Guallar E, Sanz-Gallardo MI, Veer PVT, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. New Engl J Med 347:1747–1754

    Article  CAS  PubMed  Google Scholar 

  5. Burdge GC (2004) α-Linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care 7:137–144

    Article  CAS  PubMed  Google Scholar 

  6. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM (2004) Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutri 134:2991–2997

    CAS  Google Scholar 

  7. Asif M (2011) Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurowska EM, Dresser GK, Deutsch L, Vachon D, Khalil W (2003) Bioavailability of omega-3 essential fatty acids from perilla seed oil. Prostag Leukotr Ess 68:207–212

    Article  CAS  Google Scholar 

  9. Kim HK, Choi H (2001) Dietary α-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane. Lipids 36:1331–1336

    Article  CAS  PubMed  Google Scholar 

  10. Narisawa T, Fukaura Y, Yazawa K, Ishikawa C, Isoda Y, Nishizawa Y (1994) Colon cancer prevention with a small amount of dietary perilla oil high in alpha linolenic acid in an animal model. Cancer 73:2069–2075

    Article  CAS  PubMed  Google Scholar 

  11. Sakurai K, Asahi K, Kanesaki Y, Hayashi Y, Asai J, Yuza T, Watanabe K, Katoh T, Watanabe T (2011) Dietary perilla seed oil supplement increases plasma omega-3 polyunsaturated fatty acids and ameliorates immunoglobulin a nephropathy in high immunoglobulin a strain of ddY mice. Nephron Exp Nephrol 119:e33–e39

    Article  CAS  PubMed  Google Scholar 

  12. Kim HK, Choi H (2005) Stimulation of acyl-CoA oxidase by α-linolenic acid-rich perilla oil lowers plasma triacylglycerol level in rats. Life Sci 77:1293–1306

    Article  CAS  PubMed  Google Scholar 

  13. Kim HK, Choi S, Choi H (2004) Suppression of hepatic fatty acid synthase by feeding α-linolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem 15:485–492

    Article  CAS  PubMed  Google Scholar 

  14. Chung KH, Hwang HJ, Shin KO, Jeon WM, Choi KS (2013) Effects of perilla oil on plasma concentrations of cardioprotective (n-3) fatty acids and lipid profiles in mice. Nutr Res Pract 7:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jang JY, Kim TS, Cai J, Kim J, Kim Y, Shin K, Kim KS, Lee SP, Kang MH, Choi EK, Rhee MH, Kim YB (2014) Perilla oil improves blood flow through inhibition of platelet aggregation and thrombus formation. Lab Anim Res 30:21–27

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ide T, Murata M, Sugano M (1996) Stimulation of the activities of hepatic fatty acid oxidation enzymes by dietary fat rich in α-linolenic acid in rats. J Lipid Res 37:448–463

    CAS  PubMed  Google Scholar 

  17. Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H (1997) Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J Nutr 127:1752–1757

    CAS  PubMed  Google Scholar 

  18. Hong S, Kim M, Oh C, Yoon S, Song Y (2010) Antiradical capacities of perilla, sesame and sunflower oil. J Food Sci Nutr 15:51–56

    Google Scholar 

  19. Lee OH, Lee BY, Kim YC, Shetty K, Kim YC (2008) Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils. J Food Sci 73:519–525

    Article  Google Scholar 

  20. Osada J, Joven J, Maeda N (2000) The value of apolipoprotein E knockout mice for studying the effects of dietary fat and cholesterol on atherogenesis. Curr Opin Lipidol 11:25–29

    Article  CAS  PubMed  Google Scholar 

  21. Chatterjee A, Catravas JD (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vasc Pharmacol 49:134–140

    Article  CAS  Google Scholar 

  22. Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237:208–219

    Article  CAS  PubMed  Google Scholar 

  23. Esaki T, Hayashi T, Muto E, Yamada K, Kuzuya M, Iguchi A (1997) Expression of inducible nitric oxide synthase in T lymphocytes and macrophages of cholesterol-fed rabbits. Atherosclerosis 128:39–46

    Article  CAS  PubMed  Google Scholar 

  24. Djousse L, Pankow JS, Eckfeldt JH, Folsom AR, Hopkins PN, Province MA, Hong Y, Ellison RC (2001) Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 74:612–619

    CAS  PubMed  Google Scholar 

  25. Djoussé L, Folsom AR, Province MA, Hunt SC, Ellison RC (2003) Dietary linolenic acid and carotid atherosclerosis: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 77:819–825

    PubMed  Google Scholar 

  26. Wei M, Xiong P, Zhang L, Fei M, Chen A, Li F (2013) Perilla oil and exercise decrease expressions of tumor necrosis factor-α, plasminogen activator inhibitor-1 and highly sensitive C-reactive protein in patients with hyperlipidemia. J Tradit Chin Med 33:170–175

    Article  PubMed  Google Scholar 

  27. Choe E (2013) Interaction of light and temperature on tocopherols during oxidation of sunflower oil. J Am Oil Chem Soc 90:1851–1857

    Article  CAS  Google Scholar 

  28. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  29. Wang M, Liu JR, Gao JM, Parry JW, Wei YM (2009) Antioxidant activity of tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. J Agr Food Chem 57:5106–5112

    Article  CAS  Google Scholar 

  30. Dobiasova M, Frohlich J (2001) The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FERHDL). Clin Biochem 34:583–588

    Article  CAS  PubMed  Google Scholar 

  31. Leal S, Diniz C, Sa C, Goncalves J, Soares AS, Rocha-Pereira C, Fresco P (2006) Semiautomated computer-assisted image analysis to quantify 3,3′-diaminobenzidine tetrahydrochloride-immunostained small tissues. Anal Biochem 357:137–143

    Article  CAS  PubMed  Google Scholar 

  32. Longvah T, Deosthale YG (1991) Chemical and nutritional studies on Hanshi (Perilla frutescens) a traditional oil seed from Northeast India. JAOCS 68:781–784

    CAS  Google Scholar 

  33. Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    CAS  PubMed  Google Scholar 

  34. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  35. Spady DK, Woollett LA, Dietschy JM (1993) Regulation of plasma LDL-cholesterol levels by dietary cholesterol and fatty acids. Annu Rev Nutr 13:355–381

    Article  CAS  PubMed  Google Scholar 

  36. Ihara-Watanabe M, Umekawa H, Takahashi T, Furuichi Y (2000) Comparative effects of safflower oil and perilla oil on serum and hepatic lipid levels, fatty acid compositions of serum and hepatic phospholipids, and hepatic mRNA expressions of 3-hydroxy-3-methylglutaryl CoA reductase, LDL receptor, and cholesterol 7alpha-hydroxylase in young and adult rats. Food Res Int 33:893–900

    Article  CAS  Google Scholar 

  37. Djoussé L, Hunt SC, Arnett DK, Province MA, Eckfeldt JH, Ellison RC (2003) Dietary linolenic acid is inversely associated with plasma triacylglycerol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 78:1098–1102

    PubMed  Google Scholar 

  38. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III-27–III-32

  39. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscl Throm Vas 17:2479–2488

    Article  CAS  Google Scholar 

  40. Buttery LD, Springall DR, Chester AH (1996) Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 75:77–85

    CAS  PubMed  Google Scholar 

  41. Detmers PA, Hernandez M, Mudgett J, Hassing H, Burton C, Mundt S, Chun S, Fletcher D, Card DJ, Linsnock JM, Weikel R, Bergstrom JD, Shevell DE, Hermanowski-Vosatka A, Sparrow CP, Chao YS, Rader DJ, Wright SD, Puré E (2000) Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J Immunol 165:3430–3435

    Article  CAS  PubMed  Google Scholar 

  42. Ren J, Chung SH (2007) Anti-inflammatory effect of α-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-κB and mitogen-activated protein kinase pathways. J Agr Food Chem 55:5073–5080

    Article  CAS  Google Scholar 

  43. Zhang W, Fu F, Tie R, Liang X, Tian F, Xing W, Li J, Ji L, Xing J, Sun X, Zhang H (2013) Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. Vasa 42:421–428

    Article  PubMed  Google Scholar 

  44. Cohen SL, Moore AM, Ward WE (2005) Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. J Nutr Biochem 16:368–374

    Article  CAS  PubMed  Google Scholar 

  45. Winnik S, Lohmann C, Richter EK, Schafer N, Song WL, Leiber F, Mocharia P, Hofmann J, Klingenberg R, Boren J, Becher B, FitzGerald GA, Luscher TF, Matter CM, Beer JH (2011) Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. Eur Heart J 32:2573–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant from Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Ok Song.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.H., Kim, M., Noh, J.S. et al. Perilla Oil Reduces Fatty Streak Formation at Aortic Sinus via Attenuation of Plasma Lipids and Regulation of Nitric Oxide Synthase in ApoE KO Mice. Lipids 51, 1161–1170 (2016). https://doi.org/10.1007/s11745-016-4188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4188-z

Keywords

Navigation