Skip to main content
Log in

Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus

  • Original Article
  • Published:
Lipids

Abstract

Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability to biosynthesize C20–22 long-chain polyunsaturated fatty acid (LC-PUFA) from C18 PUFA precursors, which is generally absent or low in marine teleosts. Thus, understanding the molecular basis of LC-PUFA biosynthesis in rabbitfish will contribute to efforts aimed at optimizing LC-PUFA biosynthesis in teleosts, especially marine species. In the present study, the importance of the transcription factors liver X receptor (Lxr) and sterol regulatory element-binding protein 1 (Srebp1) in regulation of LC-PUFA biosynthesis in rabbitfish was investigated. First, full-length cDNA of Lxr and Srebp1 were cloned and characterized. The Lxr mRNA displayed a ubiquitous tissue expression pattern while Srebp1 was highly expressed in eyes, brain and intestine. In rabbitfish primary hepatocytes treated with Lxr agonist T0901317, the expression of Lxr and Srebp1 was activated, accompanied by elevated mRNA levels of Δ4 and Δ6/Δ5 fatty acyl desaturase (Fad), key enzymes of LC-PUFA biosynthesis, as well as peroxisome proliferator-activated receptor γ (PPARγ). In addition, Srebp1 displayed higher expression levels in liver of rabbitfish fed a vegetable oil diet or reared at 10 ppt salinity, which were conditions reported to increase the liver expression of Δ4 and Δ6/Δ5 Fad and LC-PUFA biosynthetic ability, than fish fed a fish oil diet or reared at 32 ppt, respectively. These results suggested that Lxr and Srebp1 are involved in regulation of LC-PUFA biosynthesis probably by promoting the expression of two Fad in rabbitfish liver, which, to our knowledge, is the first report in marine teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid (20:4n-6)

cDNA:

Complementary deoxyribonucleic acid

DHA:

Docosahexaenoic acid (22:6n-3)

DMSO:

Dimethyl sulfoxide

Elovl:

Elongase of very long-chain fatty acid

EFA:

Essential fatty acid

EPA:

Eicosapentaenoic acid (20:5n-3)

EtOH:

Ethanol

Fad:

Fatty acyl desaturase

FBS:

Fetal bovine serum

FO:

Fish oil

LC-PUFA:

Long-chain polyunsaturated fatty acid

Lxr:

Liver X receptor

NAMBS:

Nan Ao Marine Biology Station

PCR:

Polymerase chain reaction

PPAR:

Peroxisome proliferator-activated receptor

PUFA:

Polyunsaturated fatty acids

Srebp:

Sterol regulatory element binding protein

VO:

Vegetable oil

22HC:

22(R)-Hydroxycholesterol

References

  1. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41(5):717–732

    Article  CAS  Google Scholar 

  2. Tocher DR, Agaba M, Hastings N, Teale AJ (2003) Biochemical and molecular studies of the fatty acid desaturation pathway in fish. Paper presented at The Big Fish Bang, Browman, H., Skiftesvik, A.B

  3. Turchini GM, Torstensen BE, Ng W (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1(1):10–57

    Article  Google Scholar 

  4. Cook HW, McMaster CR (2004) In: Vance DE, Vance JE (eds) Fatty acid desaturation and chain elongation in eukaryotes, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  5. Castro LF, Tocher DR, Monroig O (2016) Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 62:25–40

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Δ4 activity. Proc Natl Acad Sci USA 107(39):16840–16845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morais S, Castanheira F, Martinez-Rubio L, Conceicao LE, Tocher DR (2012) Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochim Biophys Acta 1821(4):660–671

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca-Madrigal J, Navarro JC, Hontoria F, Tocher DR, Martinez-Palacios CA, Monroig O (2014) Diversification of substrate specificities in Teleostei Fads2: characterization of Δ4 and Δ6/Δ5 desaturases of Chirostoma estor. J Lipid Res 55(7):1408–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuah MK, Jaya-Ram A, Shu-Chien AC (2015) The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochim Biophys Acta 1851(3):248–260

    Article  CAS  PubMed  Google Scholar 

  10. Hastings N, Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, Teale AJ (2004) Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol 6(5):463–474

    Article  CAS  PubMed  Google Scholar 

  11. Abdul HN, Carmona-Antonanzas G, Monroig O, Tocher DR, Turchini GM, Donald JA (2016) Isolation and functional characterisation of a fads2 in rainbow trout (Oncorhynchus mykiss) with Δ5 desaturase activity. PLoS One 11(3):e150770

    Google Scholar 

  12. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc Natl Acad Sci USA 98(25):14304–14309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vagner M, Santigosa E (2011) Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315(1–2):131–143

    Article  CAS  Google Scholar 

  14. Xu H, Dong X, Ai Q, Mai K, Xu W, Zhang Y, Zuo R (2014) Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrax japonicus). PLoS One 9(1):e87726

    Article  PubMed  PubMed Central  Google Scholar 

  15. Geay F, Zambonino-Infante J, Reinhardt R, Kuhl H, Santigosa E, Cahu C, Mazurais D (2012) Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): comparison with salmonid species and analysis of CpG methylation. Mar Genom 5:7–13

    Article  Google Scholar 

  16. Zheng X, Leaver MJ, Tocher DR (2009) Long-chain polyunsaturated fatty acid synthesis in fish: comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Δ6 fatty acyl desaturase gene promoters. Comp Biochem Physiol B: Biochem Mol Biol 154(3):255–263

    Article  Google Scholar 

  17. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81(3):1269–1304

    CAS  PubMed  Google Scholar 

  19. Yoshikawa T, Shimano H, Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Kimura S, Ishibashi S, Yamada N (2001) Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21(9):2991–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev 14(22):2819–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin Y, Dalen KT, Gustafsson JA, Nebb HI (2009) Regulation of hepatic fatty acid elongase 5 by LXRα-SREBP-1c. Biochim Biophys Acta 1791(2):140–147

    Article  CAS  PubMed  Google Scholar 

  22. Carmona-Antonanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ (2014) Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 534(1):1–9

    Article  CAS  PubMed  Google Scholar 

  23. Minghetti M, Leaver MJ, Tocher DR (2011) Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1. Biochim Biophys Acta 1811(3):194–202

    Article  CAS  PubMed  Google Scholar 

  24. Betancor MB, McStay E, Minghetti M, Migaud H, Tocher DR, Davie A (2014) Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L.). PLoS One 9(9):e106739

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jump DB, Tripathy S, Depner CM (2013) Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr 33:249–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86(2):465–514

    Article  CAS  PubMed  Google Scholar 

  27. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  28. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17(7):1240–1254

    Article  CAS  PubMed  Google Scholar 

  29. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol 17(7):1255–1267

    Article  CAS  PubMed  Google Scholar 

  30. Monroig O, Wang S, Zhang L, You C, Tocher DR, Li Y (2012) Elongation of long-chain fatty acids in rabbitfish Siganus canaliculatus: cloning, functional characterisation and tissue distribution of Elovl5- and Elovl4-like elongases. Aquaculture 350:63–70

    Article  Google Scholar 

  31. Li Y, Hu C, Zheng Y, Xia X, Xu W, Wang S, Chen W, Sun Z, Huang J (2008) The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp Biochem Physiol B: Biochem Mol Biol 151(2):183–190

    Article  Google Scholar 

  32. Xie D, Wang S, You C, Chen F, Tocher DR, Li Y (2015) Characteristics of LC-PUFA biosynthesis in marine herbivorous teleost Siganus canaliculatus under different ambient salinities. Aquacult Nutr 21(5):541–551

    Article  CAS  Google Scholar 

  33. Zhang Q, Xie D, Wang S, You C, Monroig O, Tocher DR, Li Y (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochim Biophys Acta 1841(7):934–943

    Article  CAS  PubMed  Google Scholar 

  34. Archer A, Lauter G, Hauptmann G, Mode A, Gustafsson J (2008) Transcriptional activity and developmental expression of liver X receptor (lxr) in Zebrafish. Dev Dynam 237(4):1090–1098

    Article  CAS  Google Scholar 

  35. Cruz-Garcia L, Sanchez-Gurmaches J, Gutierrez J, Navarro I (2011) Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-alpha in rainbow trout myocytes. Comp Biochem Physiol A: Mol Integr Physiol 160(2):125–136

    Article  CAS  Google Scholar 

  36. Cruz-Garcia L, Sanchez-Gurmaches J, Gutierrez J, Navarro I (2012) Role of LXR in trout adipocytes: target genes, hormonal regulation, adipocyte differentiation and relation to lipolysis. Comp Biochem Physiol A: Mol Integr Physiol 163(1):120–126

    Article  CAS  Google Scholar 

  37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  39. Alberti S, Steffensen KR, Gustafsson JA (2000) Structural characterisation of the mouse nuclear oxysterol receptor genes LXRα and LXRβ. Gene 243(1–2):93–103

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Mangelsdorf DJ (2002) LuXuRies of lipid homeostasis: the unity of nuclear hormone receptors, transcription regulation, and cholesterol sensing. Mol Interv 2(2):78–87

    Article  CAS  PubMed  Google Scholar 

  41. Cruz-Garcia L, Minghetti M, Navarro I, Tocher DR (2009) Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B: Biochem Mol Biol 153(1):81–88

    Article  CAS  Google Scholar 

  42. Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH (1995) Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 25(3):667–673

    Article  CAS  PubMed  Google Scholar 

  43. Dong X, Xu H, Mai K, Xu W, Zhang Y, Ai Q (2015) Cloning and characterization of SREBP-1 and PPARα in Japanese seabass Lateolabrax japonicus, and their gene expressions in response to different dietary fatty acid profiles. Comp Biochem Physiol B: Biochem Mol Biol 180:48–56

    Article  CAS  Google Scholar 

  44. Pai JT, Guryev O, Brown MS, Goldstein JL (1998) Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273(40):26138–26148

    Article  CAS  PubMed  Google Scholar 

  45. Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS (2001) Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem 276(6):4365–4372

    Article  CAS  PubMed  Google Scholar 

  46. Pan YX, Luo Z, Zhuo MQ, Hu W, Wu K, Shi X, Xu YH (2016) Liver X Receptor (LXR) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro. Comp Biochem Physiol B: Biochem Mol Biol 191:13–19

    Article  CAS  Google Scholar 

  47. Peet DJ, Janowski BA, Mangelsdorf DJ (1998) The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 8(5):571–575

    Article  CAS  PubMed  Google Scholar 

  48. Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL, Tontonoz P (2001) Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol 21(22):7558–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitney KD, Watson MA, Goodwin B, Galardi CM, Maglich JM, Wilson JG, Willson TM, Collins JL, Kliewer SA (2001) Liver X receptor (LXR) regulation of the LXRα gene in human macrophages. J Biol Chem 276(47):43509–43515

    Article  CAS  PubMed  Google Scholar 

  50. Kase ET, Andersen B, Nebb HI, Rustan AC, Thoresen GH (2006) 22-Hydroxycholesterols regulate lipid metabolism differently than T0901317 in human myotubes. Biochim Biophys Acta 1761(12):1515–1522

    Article  PubMed  Google Scholar 

  51. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486(2–3):219–231

    Article  CAS  PubMed  Google Scholar 

  52. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184

    Article  CAS  Google Scholar 

  53. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, Goldstein JL, Brown MS (2001) Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA 98(11):6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu J, Teran-Garcia M, Park JH, Nakamura MT, Clarke SD (2001) Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem 276(13):9800–9807

    Article  CAS  PubMed  Google Scholar 

  55. Xu J, Cho H, O’Malley S, Park JH, Clarke SD (2002) Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and -2 in three distinct stages and by different mechanisms. J Nutr 132(11):3333–3339

    CAS  PubMed  Google Scholar 

  56. Geay F, Santigosa ICE, Corporeau C, Boudry P, Dreano Y, Corcos L, Bodin N, Vandeputte M, Zambonino-Infante JL, Mazurais D, Cahu CL (2010) Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comp Biochem Physiol B: Biochem Mol Biol 156(4):237–243

    Article  CAS  Google Scholar 

  57. Colin S, Bourguignon E, Boullay AB, Tousaint JJ, Huet S, Caira F, Staels B, Lestavel S, Lobaccaro JM, Delerive P (2008) Intestine-specific regulation of PPARα gene transcription by liver X receptors. Endocrinology 149(10):5128–5135

    Article  CAS  PubMed  Google Scholar 

  58. Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB (2004) Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression. Mol Cell Biol 24(8):3430–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major International Joint Research Project from the National Natural Science Foundation of China (NSFC) (31110103913), NSFC General Projects (No. 41276179) and Youth Projects (Nos. 31202011, 31202012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyou Li.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 282 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., You, C., Liu, F. et al. Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus . Lipids 51, 1051–1063 (2016). https://doi.org/10.1007/s11745-016-4176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4176-3

Keywords

Navigation