Skip to main content
Log in

4-Methylzymosterone and Other Intermediates of Sterol Biosynthesis from Yeast Mutants Engineered in the ERG27 Gene Encoding 3-Ketosteroid Reductase

  • Methods
  • Published:
Lipids

Abstract

Studies in the post-squalene section of sterol biosynthesis may be hampered by the poor availability of authentic standards. The present study used different yeast strains engineered in 3-ketosteroid reductase (Erg27p) to obtain radioactive and non-radioactive intermediates of sterol biosynthesis hardly or not available commercially. Non-radioactive 3-keto 4-monomethyl sterones were purified from non-saponifiable lipids extracted from cells bearing point-mutated 3-ketosteroid reductase. Two strategies were adopted to prepare the radioactive compounds: (1) incubation of cell homogenates of an ERG27-deletant strain with radioactive lanosterol, (2) incubation of growing cells of a strain expressing point-mutated 3-ketosteroid reductase with radioactive acetate. Chemical reduction of both radioactive and non-radioactive 3-keto sterones gave the physiological 3-β OH sterols, as well as the non-physiological 3-α OH isomers. This combined biological and chemical preparation procedure provided otherwise unavailable or hardly available 4-mono-methyl intermediates of sterol biosynthesis, paving the way for research into their roles in physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

OSC/Erg7p:

Yeast oxidosqualene cyclase

ERG7 :

Gene encoding oxidosqualene cyclase

Erg27p:

Yeast 3-ketosteroid reductase

ERG27 :

Gene encoding 3-ketosteroid reductase

HSD17B7:

Hydroxysteroid-17β-dehydrogenase type 7

SC4MOL:

Sterol-C-4 methyloxidase-like

NSDHL:

NADH sterol dehydrogenase-like

C14ORF1:

Chromosome 14 Open Reading Frame 1

MAS:

Meiosis-activating sterols

EGFR:

Epidermal growth factor receptor

SAM:

S-adenosyl methionine

TLC:

Thin-layer chromatography

CI–MS:

Chemical ionization-mass spectrometry

GC–MS:

Gas chromatography-mass spectrometry

NMR:

Nuclear magnetic resonance

References

  1. Byskov AG, Baltsen M, Andersen CJ (1998) Meiosis-activating sterols: background, discovery, and possible use. J Mol Med 76:818–823

    Article  CAS  PubMed  Google Scholar 

  2. Marijanovic Z, Laubner D, Möller G, Gege C, Husen B, Adamski J, Breitling R (2003) Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis. Mol Endocrinol 17:1715–1725

    Article  CAS  PubMed  Google Scholar 

  3. Mo C, Milla P, Athenstaedt K, Ott R, Balliano G, Daum G, Bard M (2003) In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Biochim Biophys Acta 1633:68–74

    Article  CAS  PubMed  Google Scholar 

  4. Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee CN, Heidbrink JL, McKinnon K, Bushman V, Olsen H, Fitzhug W, Li A, Van Orden K, He T, Ruben SM, Moore PA (2012) RNA interference characterization of proteins discovered by proteomic analysis of pancreatic cancer reveals function in cell growth and survival. Pancreas 41:84–94

    Article  CAS  PubMed  Google Scholar 

  6. Horvat S, Mcwhir J, Rozman D (2011) Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 3:69–90

    Article  Google Scholar 

  7. Stottmann RW, Turbe-Doan A, Tran P, Kratz L, Moran JL, Kelley RI, Beier DR (2011) Cholesterol metabolism is required for intracellular hedgehog signal transduction in vivo. PLoS Genet 7:1–16

    Article  Google Scholar 

  8. Driver AM, Kratz LE, Kelley RI, Stottmann RW (2016) Altered cholesterol biosynthesis causes precocious neurogenesis in the developing mouse forebrain. Neurobiol Dis 91:69–82

    Article  CAS  PubMed  Google Scholar 

  9. Cunningham D, De Barber AE, Bir N, Binkley L, Merkens LS, Steiner RD, Herman GE (2015) Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 24:2808–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sukhanova A, Gorin A, Serebriiskii IG, Gabitova L, Zheng H, Restifo D, Egleston BL, Cunningham D, Bagnyukova T, Liu H, Nikonova A, Adams GP, Zhou Y, Yang DH, Mehra R, Burtness B, Cai KQ, Szanto AK, Kratz LE, Kelley RI, Weiner LM, Herman GE, Golemis EA, Astsaturov I (2013) Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov 3:96–111

    Article  CAS  PubMed  Google Scholar 

  11. Ačimovič J, Rozman D (2013) Steroidal triterpenes of cholesterol synthesis. Molecules 18:4002–4017

    Article  PubMed  Google Scholar 

  12. Xu R, Wilson WK, Matsuda SPT (2002) Production of meiosis-activating sterols from metabolically engineered yeast. J Am Chem Soc 124:918–919

    Article  CAS  PubMed  Google Scholar 

  13. Taramino S, Valachovic M, Oliaro-Bosso S, Viola F, Teske B, Bard M, Balliano G (2010) Interactions of oxidosqualene cyclase (Erg7p) with 3-keto reductase (Erg27p) and other enzymes of sterol biosynthesis in yeast. Biochim Biophys Acta 1801:156–162

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  PubMed  Google Scholar 

  15. Teske B, Taramino S, Bhuiyan MSA, Kumaraswami NS, Randall SK, Barbuch R, Eckstein J, Balliano G, Bard M (2008) Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (Erg7p) and 3-ketoreductase (Erg27p), in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1781:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li TS, Li JT, Li HZ (1995) Modified and convenient preparation of silica impregnated with silver nitrate and its application to the separation of steroids and triterpenes. J Chromatogr A 715:372–375

    Article  CAS  Google Scholar 

  17. Gachotte D, Sen SE, Eckstein J, Barbuch R, Krieger M, Ray BD, Bard M (1999) Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. PNAS 98:12655–12660

    Article  Google Scholar 

  18. Wilcox LJ, Balderes DA, Wharton BA, Tinkelenberg H, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    Article  CAS  PubMed  Google Scholar 

  19. Moore JT Jr, Gaylor JL (1970) Investigation of an S-adenosylmethionine:Δ24-sterol methyltransferase in ergosterol biosynthesis in yeast. J Biol Chem 245:4684–4688

    CAS  PubMed  Google Scholar 

  20. Taramino S, Teske B, Oliaro-Bosso S, Bard M, Balliano G (2010) Divergent interactions involving the oxidosqualene cyclase and the steroid-3-ketoreductase in the sterol biosynthetic pathway of mammals and yeasts. Biochim Biophys Acta 1801:1232–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M. Bard for providing some of the yeast strains used in this work. We also thank F. Viola for helpful discussions and revision of the manuscript.This research was supported by the financial support of the University of Torino [Fondo di Ricerca Locale (ex 60 %) 2013—linea B] to Simonetta Oliaro-Bosso.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simonetta Oliaro-Bosso or Gianni Balliano.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1066 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrante, T., Barge, A., Taramino, S. et al. 4-Methylzymosterone and Other Intermediates of Sterol Biosynthesis from Yeast Mutants Engineered in the ERG27 Gene Encoding 3-Ketosteroid Reductase. Lipids 51, 1103–1113 (2016). https://doi.org/10.1007/s11745-016-4173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4173-6

Keywords

Navigation