Skip to main content
Log in

Abnormalities in the Metabolism of Fatty Acids and Triacylglycerols in the Liver of the Goto-Kakizaki Rat: A Model for Non-Obese Type 2 Diabetes

  • Original Article
  • Published:
Lipids

Abstract

The Goto-Kakizaki (GK) rat is widely used as an animal model for spontaneous-onset type 2 diabetes without obesity; nevertheless, little information is available on the metabolism of fatty acids and triacylglycerols (TAG) in their livers. We investigated the mechanisms underlying the alterations in the metabolism of fatty acids and TAG in their livers, in comparison with Zucker (fa/fa) rats, which are obese and insulin resistant. Lipid profiles, the expression of genes for enzymes and proteins related to the metabolism of fatty acid and TAG, de novo synthesis of fatty acids and TAG in vivo, fatty acid synthase activity in vitro, fatty acid oxidation in liver slices, and very-low-density-lipoprotein (VLDL)-TAG secretion in vivo were estimated. Our results revealed that (1) the TAG accumulation was moderate, (2) the de novo fatty acid synthesis was increased by upregulation of fatty acid synthase in a post-transcriptional manner, (3) fatty acid oxidation was also augmented through the induction of carnitine palmitoyltransferase 1a, and (4) the secretion rate of VLDL-TAG remained unchanged in the livers of GK rats. These results suggest that, despite the fact that GK rats exhibit non-obese type 2 diabetes, the upregulation of de novo lipogenesis is largely compensated by the upregulation of fatty acid oxidation, resulting in only moderate increase in TAG accumulation in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

ACLY:

ATP-citrate lyase

ACOT1:

Acyl-CoA thioesterase 1

ACOX1:

Peroxisomal acyl-CoA oxidase 1

ACSL:

Long-chain acyl-CoA synthetase

APOC3:

Apolipoprotein CIII

CE:

Cholesteryl ester(s)

CPT1a:

Carnitine palmitoyltransferase 1a

CYP:

Cytochrome P450

DAG:

Diacylglycerol(s)

DGAT:

Diglyceride acyltransferase

ELOVL:

Fatty acid elongase

FABP1:

Fatty acid binding protein 1

FABPpm:

Plasma membrane-associated fatty acid binding protein

FAS:

Fatty acid synthase

FAT/CD36:

Fatty acid translocase

FATP:

Fatty acid transport protein

FFA:

Unesterified fatty acid(s)

GCK:

Glucokinase

GK rat:

Goto-Kakizaki rat

GPAT:

Glycerol-3-phosphate acyltransferase

G6Pase:

Glucose-6-phosphatase

G6PD:

Glucose-6-phosphate dehydrogenase

HNF4α:

Hepatic nuclear factor 4α

LCAD:

Long-chain acyl-CoA dehydrogenase

LPK:

L-type pyruvate kinase

LXRα:

Liver X receptor α

MCAD:

Medium-chain acyl-CoA dehydrogenase

MCD:

Malonyl-CoA decarboxylase

ME1:

Malic enzyme 1

MUFA:

Monounsaturated fatty acid(s)

P-ACC:

Phospho-acetyl-CoA carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1α

PPAR:

Peroxisome proliferator-activated receptor

SCD:

Stearoyl-CoA desaturase

SREBP-1c:

Sterol regulatory element binding protein-1c

TAG:

Triacylglycerol(s)

T2D:

Type 2 diabetes

TLC:

Thin-layer chromatography

UCP2:

Uncoupling protein 2

VLCAD:

Very-long-chain acyl-CoA dehydrogenase

VLDL:

Very-low-density lipoprotein

WI rat:

Wistar rat, a control corresponding to the GK rat

ZF rat:

Obese Zucker (fa/fa) rat

ZL rat:

Lean Zucker (?/+) rat

References

  1. Loria P, Lonardo A, Anania F (2013) Liver and diabetes. A vicious circle. Hepatol Res 43:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang B, Chandrasekera PC, Pippin JJ (2014) Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 10:131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanaka S, Yamazaki T, Asano S, Mitsumoto A, Kobayashi D, Kudo N, Kawashima Y (2013) Increased lipid synthesis and decreased beta-oxidation in the liver of SHR/NDmcr-cp (cp/cp) rats, an animal model of metabolic syndrome. Lipids 48:1115–1134

    Article  CAS  PubMed  Google Scholar 

  4. Sone H, Ito H, Ohashi Y, Akanuma Y, Yamada N, Japan Diabetes Complication Study Group (2003) Obesity and type 2 diabetes in Japanese patients. Lancet 361:85

    Article  PubMed  Google Scholar 

  5. Katakura M, Komatsu M, Sato Y, Hashizume K, Aizawa T (2004) Primacy of beta-cell dysfunction in the development of hyperglycemia: a study in the Japanese general population. Metabolism 53:949–953

    Article  CAS  PubMed  Google Scholar 

  6. Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85

    Google Scholar 

  7. Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J (2012) The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol 933:125–159

    CAS  PubMed  Google Scholar 

  8. Matsuura B, Kanno S, Minami H, Tsubouchi E, Iwai M, Matsui H, Horiike N, Onji M (2004) Effects of antihyperlipidemic agents on hepatic insulin sensitivity in perfused Goto-Kakizaki rat liver. J Gastroenterol 39:339–345

    Article  CAS  PubMed  Google Scholar 

  9. Bisbis S, Bailbe D, Tormo MA, Picarel-Blanchot F, Derouet M, Simon J, Portha B (1993) Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol 265:E807–E813

    CAS  PubMed  Google Scholar 

  10. Perry RJ, Samuel VT, Petersen KF, Shulman GI (2014) The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Musso G, Gambino R, Cassader M, Pagano G (2011) Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 43:617–649

    Article  PubMed  Google Scholar 

  12. Karahashi M, Ishii F, Yamazaki T, Imai K, Mitsumoto A, Kawashima Y, Kudo N (2013) Up-regulation of stearoyl-CoA desaturase 1 increases liver MUFA content in obese Zucker but not Goto-Kakizaki rats. Lipids 48:457–467

    Article  CAS  PubMed  Google Scholar 

  13. Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Jarvinen H (2008) Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135:122–130

    Article  CAS  PubMed  Google Scholar 

  14. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  15. Zurkowski P (1964) A rapid method for cholesterol determination with a single reagent. Clin Chem 10:451–453

    CAS  PubMed  Google Scholar 

  16. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    Article  CAS  PubMed  Google Scholar 

  17. Imai K, Koyama M, Kudo N, Shirahata A, Kawashima Y (1999) Increase in hepatic content of oleic acid induced by dehydroepiandrosterone in the rat. Biochem Pharmacol 58:925–933

    Article  CAS  PubMed  Google Scholar 

  18. Karahashi M, Hoshina M, Yamazaki T, Sakamoto T, Mitsumoto A, Kawashima Y, Kudo N (2013) Fibrates reduce triacylglycerol content by upregulating adipose triglyceride lipase in the liver of rats. J Pharmacol Sci 123:356–370

    Article  CAS  PubMed  Google Scholar 

  19. Sheng Z, Otani H, Brown MS, Goldstein JL (1995) Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA 92:935–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakurai T, Miyazawa S, Hashimoto T (1978) Effects of di-(2-ethylhexyl)phthalate administration on carbohydrate and fatty acid metabolism in rat liver. J Biochem 83:313–320

    CAS  PubMed  Google Scholar 

  21. Decker K (1985) Acetyl-coenzyme A. In: Bermeyer J (ed) Methods of enzymatic analysis, vol 7. Wiley-Blackwell, New York

    Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Nepokroeff CM, Porter JW, Lakshmanan MR (1975) Fatty acid synthase from rat liver. In: Lowenstein JM (ed) Methods in enzymology vol. XXXV, lipids part B. Academic, New York

    Google Scholar 

  24. Friedman MI, Harris RB, Ji H, Ramirez I, Tordoff MG (1999) Fatty acid oxidation affects food intake by altering hepatic energy status. Am J Physiol 276:R1046–R1053

    CAS  PubMed  Google Scholar 

  25. Tietge UJ, Bakillah A, Maugeais C, Tsukamoto K, Hussain M, Rader DJ (1999) Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res 40:2134–2139

    CAS  PubMed  Google Scholar 

  26. Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, Still CD, Gerhard GS, Han X, Dziura J, Petersen KF, Samuel VT, Shulman GI (2011) Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 108:16381–16385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Oresic M, Yki-Jarvinen H (2009) Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terrettaz J, Jeanrenaud B (1983) In vivo hepatic and peripheral insulin resistance in genetically obese (fa/fa) rats. Endocrinology 112:1346–1351

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL (2000) Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86

    Article  CAS  PubMed  Google Scholar 

  30. Kawano Y, Cohen DE (2013) Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48:434–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azzout-Marniche D, Becard D, Guichard C, Foretz M, Ferre P, Foufelle F (2000) Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 350(Pt 2):389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson KS, Towle HC (1991) Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J Biol Chem 266:8679–8682

    CAS  PubMed  Google Scholar 

  33. Coleman RA, Mashek DG (2011) Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 111:6359–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bu SY, Mashek DG (2010) Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 51:3270–3280

    Article  PubMed  PubMed Central  Google Scholar 

  35. Man WC, Miyazaki M, Chu K, Ntambi J (2006) Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res 47:1928–1939

    Article  CAS  PubMed  Google Scholar 

  36. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, Lonardo A, Carulli N, Loria P (2009) Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 24:830–840

    Article  CAS  PubMed  Google Scholar 

  37. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wendel AA, Cooper DE, Ilkayeva OR, Muoio DM, Coleman RA (2013) Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J Biol Chem 288:27299–27306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  CAS  PubMed  Google Scholar 

  41. Buque X, Cano A, Miquilena-Colina ME, Garcia-Monzon C, Ochoa B, Aspichueta P (2012) High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes. Am J Physiol Endocrinol Metab 303:E504–E514

    Article  CAS  PubMed  Google Scholar 

  42. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  PubMed  Google Scholar 

  43. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  PubMed  Google Scholar 

  44. Clouet P, Henninger C, Bezard J (1986) Study of some factors controlling fatty acid oxidation in liver mitochondria of obese Zucker rats. Biochem J 239:103–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Triscari J, Greenwood MR, Sullivan AC (1982) Oxidation and ketogenesis in hepatocytes of lean and obese Zucker rats. Metabolism 31:223–228

    Article  CAS  PubMed  Google Scholar 

  46. Fukuda N, Azain MJ, Ontko JA (1982) Altered hepatic metabolism of free fatty acids underlying hypersecretion of very low density lipoproteins in the genetically obese Zucker rats. J Biol Chem 257:14066–14072

    CAS  PubMed  Google Scholar 

  47. Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP (2006) Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 4:199–210

    Article  CAS  PubMed  Google Scholar 

  48. Rakhshandehroo M, Sanderson LM, Matilainen M, Stienstra R, Carlberg C, de Groot PJ, Muller M, Kersten S (2007) Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res. doi:10.1155/2007/26839

    PubMed  PubMed Central  Google Scholar 

  49. Rakhshandehroo M, Knoch B, Muller M, Kersten S (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. doi:10.1155/2010/612089

    PubMed  PubMed Central  Google Scholar 

  50. Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta 1821:747–753

    Article  CAS  PubMed  Google Scholar 

  51. Akkaoui M, Cohen I, Esnous C, Lenoir V, Sournac M, Girard J, Prip-Buus C (2009) Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Biochem J 420:429–438

    Article  CAS  PubMed  Google Scholar 

  52. Chan DC, Watts GF, Redgrave TG, Mori TA, Barrett PH (2002) Apolipoprotein B-100 kinetics in visceral obesity: associations with plasma apolipoprotein C-III concentration. Metabolism 51:1041–1046

    Article  CAS  PubMed  Google Scholar 

  53. Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, Semenkovich CF (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322

    Article  CAS  PubMed  Google Scholar 

  55. Burri L, Thoresen GH, Berge RK (2010) The role of PPARalpha activation in liver and muscle. PPAR Res. doi:10.1155/2010/54235910.1155/2010/54235

  56. Picarel-Blanchot F, Berthelier C, Bailbe D, Portha B (1996) Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 271:E755–E762

    CAS  PubMed  Google Scholar 

  57. Orellana-Gavalda JM, Herrero L, Malandrino MI, Paneda A, Sol Rodriguez-Pena M, Petry H, Asins G, Van Deventer S, Hegardt FG, Serra D (2011) Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation. Hepatology 53:821–832

    Article  CAS  PubMed  Google Scholar 

  58. Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab 294:E969–E977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid (22590120) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Kudo.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahashi, M., Hirata-Hanta, Y., Kawabata, K. et al. Abnormalities in the Metabolism of Fatty Acids and Triacylglycerols in the Liver of the Goto-Kakizaki Rat: A Model for Non-Obese Type 2 Diabetes. Lipids 51, 955–971 (2016). https://doi.org/10.1007/s11745-016-4171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4171-8

Keywords

Navigation