Skip to main content

Advertisement

Log in

Eicosapentaenoic Acid, Arachidonic Acid and Eicosanoid Metabolism in Juvenile Barramundi Lates calcarifer

  • Original Article
  • Published:
Lipids

Abstract

A two part experiment was conducted to assess the response of barramundi (Lates calcarifer; initial weight = 10.3 ± 0.03 g; mean ± S.D.) fed one of five diets with varying eicosapentaenoic acid (diets 1, 5, 10, 15 and 20 g/kg) or one of four diets with varying arachidonic acid (1, 6, 12, 18 g/kg) against a fish oil control diet. After 6 weeks of feeding, the addition of EPA or ARA did not impact on growth performance or feed utilisation. Analysis of the whole body fatty acids showed that these reflected those of the diets. The ARA retention demonstrated an inversely related curvilinear response to either EPA or ARA. The calculated marginal utilisation efficiencies of EPA and ARA were high (62.1 and 91.9 % respectively) and a dietary ARA requirement was defined (0.012 g/kg0.796/day). The partial cDNA sequences of genes regulating eicosanoid biosynthesis were identified in barramundi tissues, namely cyclooxygenase 1 (Lc COX1a, Lc COX1b), cyclooxygenase 2 (Lc COX2) and lipoxygenase (Lc ALOX-5). Both Lc COX2 and Lc ALOX-5 expression in the liver tissue were elevated in response to increasing dietary ARA, meanwhile expression levels of Lc COX2 and the mitochondrial fatty acid oxidation gene carnitine palmitoyltransferase 1 (Lc CPT1a) were elevated in the kidney. A low level of EPA increased the expression of Lc COX1b in the liver. Consideration should be given to the EPA to ARA balance for juvenile barramundi in light of nutritionally inducible nature of the cyclooxygenase and lipoxygenase enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid (20:4n-6)

C18PUFA:

Polyunsaturated fatty acid(s)

cDNA:

Complementary deoxyribonucleic acid

COX:

Cyclooxygenase (prostaglandin G/H synthase)

DHA:

Docosahexaenoic acid (22:6n-3)

EPA:

Eicosapentaenoic acid (20:5n-3)

Lc:

Lates calcarifer

LC-PUFA:

Long chain-polyunsaturated fatty acid(s)

LOX:

Lipoxygenase (arachidonate 5-lipoxygenase)

MUFA:

Monounsaturated fatty acid(s)

RNA:

Ribonucleic acid

SFA:

Saturated fatty acid(s)

References

  1. Rowley AF, Knight J, Lloyd-Evans P, Holland JW, Vickers PJ (1995) Eicosanoids and their role in immune modulation in fish—a brief overview. Fish Shellfish Immunol 5:549–567

    Article  Google Scholar 

  2. Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289

    Article  PubMed  Google Scholar 

  3. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  4. Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S–599S

    Article  CAS  PubMed  Google Scholar 

  5. Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50(Suppl):S29–S34

    PubMed  PubMed Central  Google Scholar 

  6. Matsumoto T, Funk CD, Rådmark O, Höög JO, Jörnvall H, Samuelsson B (1988) Molecular cloning and amino acid sequence of human 5-lipoxygenase. Proc Natl Acad Sci 85:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishikawa T, Herschman HR (2007) Two inducible, functional cyclooxygenase-2 genes are present in the rainbow trout genome. J Cell Biochem Suppl 102:1486–1492

    Article  CAS  Google Scholar 

  8. Ishikawa T, Griffin KJP, Banerjee U, Herschman HR (2007) The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes. Biochem Biophys Res Commun 352:181–187

    Article  CAS  PubMed  Google Scholar 

  9. Olsen RE, Svardal A, Eide T, Wargelius A (2012) Stress and expression of cyclooxygenases (cox1, cox2a, cox2b) and intestinal eicosanoids, in Atlantic salmon, Salmo salar L. Fish Physiol Biochem 38:951–962

    Article  CAS  PubMed  Google Scholar 

  10. Breder CD, Dewitt D, Kraig RP (1995) Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol 355:296–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  12. Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499

    Article  CAS  Google Scholar 

  13. Izquierdo MS (1996) Essential fatty acid requirements of cultured marine fish larvae. Aquac Nutr 2:183–191

    Article  CAS  Google Scholar 

  14. Ghioni C, Porter AEA, Taylor GW, Tocher DR (2002) Metabolism of 18:4n-3 (stearidonic acid) and 20:4n-3 in salmonid cells in culture and inhibition of the production of prostaglandin F (PGF) from 20:4n-6 (arachidonic acid). Fish Physiol Biochem 27:81–96

    Article  CAS  Google Scholar 

  15. Castell JD, Bell JG, Tocher DR, Sargent JR (1994) Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture 128:315–333

    Article  CAS  Google Scholar 

  16. Atalah E, Hernández-Cruz CM, Benítez-Santana T, Ganga R, Roo J, Izquierdo M (2011) Importance of the relative levels of dietary arachidonic acid and eicosapentaenoic acid for culture performance of gilthead seabream (Sparus aurata) larvae. Aquac Res 42:1279–1288

    Article  CAS  Google Scholar 

  17. Yuan Y, Li S, Mai K, Xu W, Zhang Y, Ai Q (2015) The effect of dietary arachidonic acid (ARA) on growth performance, fatty acid composition and expression of ARA metabolism-related genes in larval half-smooth tongue sole (Cynoglossus semilaevis). Br J Nutr 113:1518–1530

    Article  CAS  PubMed  Google Scholar 

  18. Montero D, Terova G, Rimoldi S, Betancor MB, Atalah E, Torrecillas S, Caballero MJ, Zamorano MJ, Izquierdo M (2015) Modulation of the expression of components of the stress response by dietary arachidonic acid in European sea bass (Dicentrarchus labrax) larvae. Lipids 50:1029–1041

    Article  CAS  PubMed  Google Scholar 

  19. Glencross BD, Rutherford N (2011) A determination of the quantitative requirements for docosahexaenoic acid for juvenile barramundi (Lates calcarifer). Aquac Nutr 17:e536–e548

    Article  Google Scholar 

  20. Nichols PD, Glencross B, Petrie JR, Singh SP (2014) Readily available sources of long-chain omega-3 oils: is farmed Australian seafood a better source of the good oil than wild-caught seafood? Nutrients 6:1063–1079

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brown PB, Hart SD (2011) Soybean oil and other n-6 polyunsaturated fatty acid-rich vegetable oils. In: Turchini GM, Ng WK, Tocher DR (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis group, Boca Raton

    Google Scholar 

  22. Salini MJ, Irvin SJ, Bourne N, Blyth D, Cheers S, Habilay N, Glencross BD (2015) Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat. Aquaculture 449:48–57

    Article  CAS  Google Scholar 

  23. Glencross BD, Curnow J, Hawkins W, Kissil GWM, Peterson D (2003) Evaluation of the feed value of a transgenic strain of the narrow-leaf lupin (Lupinus angustifolius) in the diet of the marine fish, Pagrus auratus. Aquac Nutr 9:197–206

    Article  CAS  Google Scholar 

  24. Wade N, Skiba-Cassy S, Dias K, Glencross B (2014) Postprandial molecular responses in the liver of the barramundi, Lates calcarifer. Fish Physiol Biochem 40:427–443

    Article  CAS  PubMed  Google Scholar 

  25. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  26. Christie WW (2003) Lipid analysis, isolation, separation, identification and structural analysis of lipids. PJ Barnes and Associates, Bridgewater

    Google Scholar 

  27. Ackman RG (2002) The gas chromatograph in practical analysis of common and uncommon fatty acids for the 21st century. Anal Chim Acta 465:175–192

    Article  CAS  Google Scholar 

  28. Salini MJ, Turchini GM, Wade N, Glencross BD (2015) Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi Lates calcarifer. Br J Nutr 114:1784–1796

    Article  CAS  PubMed  Google Scholar 

  29. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  CAS  PubMed  Google Scholar 

  30. De Santis C, Smith-Keune C, Jerry DR (2011) Normalizing RT-qPCR data: are we getting the right answers? An appraisal of normalization approaches and internal reference genes from a case study in the finfish Lates calcarifer. Mar Biotechnol 13:170–180

    Article  CAS  PubMed  Google Scholar 

  31. Maynard LA, Loosli JK (1979) Animal nutrition. McGraw-Hill Book Co., New York

    Google Scholar 

  32. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  33. Cottin SC, Sanders TA, Hall WL (2011) The differential effects of EPA and DHA on cardiovascular risk factors. Proc Nutr Soc 70:215–231

    Article  CAS  PubMed  Google Scholar 

  34. Aarsland A, Lundquist M, Børretsen B, Berge R (1990) On the effect of peroxisomal β-oxidation and carnitine palmitoyltransferase activity by eicosapentaenoic acid in liver and heart from rats. Lipids 25:546–548

    Article  CAS  PubMed  Google Scholar 

  35. Thomassen MS, Rein D, Berge GM, Østbye TK, Ruyter B (2012) High dietary EPA does not inhibit Δ5 and Δ6 desaturases in Atlantic salmon (Salmo salar L.) fed rapeseed oil diets. Aquaculture 360–361:78–85

    Article  Google Scholar 

  36. Trushenski J, Schwarz M, Bergman A, Rombenso A, Delbos B (2012) DHA is essential, EPA appears largely expendable, in meeting the n-3 long-chain polyunsaturated fatty acid requirements of juvenile cobia Rachycentron canadum. Aquaculture 326–329:81–89

    Article  Google Scholar 

  37. Villalta M, Estevez A, Bransden MP, Bell JG (2008) Effects of dietary eicosapentaenoic acid on growth, survival, pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquac Nutr 14:232–241

    Article  CAS  Google Scholar 

  38. Watanabe T, Arakawa T, Takeuchi T, Satoh S (1989) Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficiency in Juvenile striped jack Pseudocaranx dentex. Nippon Suisan Gakk 55:1989–1995

    Article  CAS  Google Scholar 

  39. Bell JG, Tocher D, MacDonald F, Sargent J (1995) Effects of dietary borage oil [enriched in γ-linolenic acid,18:3(n-6)] or marine fish oil [enriched in eicosapentaenoic acid,20:5(n-3)] on growth, mortalities, liver histopathology and lipid composition of juvenile turbot (Scophthalmus maximus). Fish Physiol Biochem 14:373–383

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi T, Toyota M, Satoh S, Watanabe T (1990) Requirement of juvenile red seabream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakk 56:1263–1269

    Article  CAS  Google Scholar 

  41. Furuita H, Takeuchi T, Toyota M, Watanabe T (1996) EPA and DHA requirements in early juvenile red sea bream using HUFA enriched Artemia nauplii. Fish Sci 62:246–251

    CAS  Google Scholar 

  42. Bransden MP, Butterfield GM, Walden J, McEvoy LA, Bell JG (2005) Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic cod (Gadus morhua). Aquaculture 250:328–340

    Article  CAS  Google Scholar 

  43. Alves Martins D, Rocha F, Martínez-Rodríguez G, Bell G, Morais S, Castanheira F, Bandarra N, Coutinho J, Yúfera M, Conceição LE (2012) Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. Br J Nutr 108:864–874

    Article  CAS  PubMed  Google Scholar 

  44. Fountoulaki E, Alexis MN, Nengas I, Venou B (2003) Effects of dietary arachidonic acid (20:4n-6), on growth, body composition, and tissue fatty acid profile of gilthead bream fingerlings (Sparus aurata L.). Aquaculture 225:309–323

    Article  CAS  Google Scholar 

  45. Villalta M, Estévez A, Bransden MP (2005) Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture 245:193–209

    Article  CAS  Google Scholar 

  46. Estévez A, McEvoy LA, Bell JG, Sargent JR (1999) Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180:321–343

    Article  Google Scholar 

  47. Norambuena F, Morais S, Emery JA, Turchini GM (2015) Arachidonic acid and eicosapentaenoic acid metabolism in juvenile Atlantic salmon as affected by water temperature. PLoS One 10:e0143622

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rosenlund G, Corraze G, Izquierdo M, Torstensen BE (2011) The effects of fish oil replacement on nutritional and organoleptic qualities of farmed fish. In: Turchini GM, Ng WK, Tocher D (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis group, Boca Raton

    Google Scholar 

  49. Norambuena F, Morais S, Estévez A, Bell JG, Tocher DR, Navarro JC, Cerdà J, Duncan N (2013) Dietary modulation of arachidonic acid metabolism in Senegalese sole (Solea Senegalensis) broodstock reared in captivity. Aquaculture 372–375:80–88

    Article  Google Scholar 

  50. Glencross BD, Hawkins WE, Curnow JG (2003) Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow-out on plant oil based diets. Aquac Nutr 9:409–418

    Article  CAS  Google Scholar 

  51. Rangel-Huerta OD, Aguilera CM, Mesa MD, Gil A (2012) Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials. Br J Nutr 107:S159–S170

    Article  CAS  PubMed  Google Scholar 

  52. Badawi AF, El-Sohemy A, Stephen LL, Ghoshal AK, Archer MC (1998) The effect of dietary n-3 and n-6 polyunsaturated fatty acids on the expression of cyclooxygenase 1 and 2 and levels of p21ras in rat mammary glands. Carcinogenesis 19:905–910

    Article  CAS  PubMed  Google Scholar 

  53. Sinclair A, O’Dea K, Naughton J (1983) Elevated levels of arachidonic acid in fish from northern Australian coastal waters. Lipids 18:877–881

    Article  CAS  PubMed  Google Scholar 

  54. Sijben JWC, Calder PC (2007) Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc Nutr Soc 66:237–259

    Article  CAS  PubMed  Google Scholar 

  55. Montero D, Benitez-Dorta V, Caballero MJ, Ponce M, Torrecillas S, Izquierdo M, Zamorano MJ, Manchado M (2015) Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. Fish Shellfish Immunol 44:100–108

    Article  CAS  PubMed  Google Scholar 

  56. Zuo R, Mai K, Xu W, Turchini G, Ai Q (2015) Dietary ALA, but not LNA, increase growth, reduce inflammatory processes, and increase anti-oxidant capacity in the marine finfish Larimichthys crocea. Lipids 50:149–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank and acknowledge the technical assistance provided by CSIRO Agriculture staff including David Blyth, Natalie Habilay, Simon Irvin, and David Poppi at the Bribie Island Research Centre (BIRC), Queensland, Australia. This research received no specific grant from any funding agency, commercial or not-for-profit sectors. However, we would like to acknowledge the CSIRO Agriculture for financial assistance. There are no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Salini.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salini, M.J., Wade, N.M., Araújo, B.C. et al. Eicosapentaenoic Acid, Arachidonic Acid and Eicosanoid Metabolism in Juvenile Barramundi Lates calcarifer . Lipids 51, 973–988 (2016). https://doi.org/10.1007/s11745-016-4167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4167-4

Keywords

Navigation