Skip to main content
Log in

Two Major Bile Acids in the Hornbills, (24R,25S)-3α,7α,24-Trihydroxy-5β-cholestan-27-oyl Taurine and Its 12α-Hydroxy Derivative

  • Original Article
  • Published:
Lipids

Abstract

Two major bile acids were isolated from the gallbladder bile of two hornbill species from the Bucerotidae family of the avian order Bucerotiformes Buceros bicornis (great hornbill) and Penelopides panini (Visayan tarictic hornbill). Their structures were determined to be 3α,7α,24-dihydroxy-5β-cholestan-27-oic acid and its 12α-hydroxy derivative, 3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (varanic acid, VA), both present in bile as their corresponding taurine amidates. The four diastereomers of varanic acid were synthesized and their assigned structures were confirmed by X-ray crystallographic analysis. VA and its 12-deoxy derivative were found to have a (24R,25S)-configuration. 13 additional hornbill species were also analyzed by HPLC and showed similar bile acid patterns to B. bicornis and P. panini. The previous stereochemical assignment for (24R,25S)-VA isolated from the bile of varanid lizards and the Gila monster should now be revised to the (24S,25S)-configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

VA:

Varanic acid (3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid)

DVA:

12-Deoxy varanic acid (3α,7α,24-trihydroxy-5β-cholestan-27-oic acid)

RP-TLC:

Reversed-phase thin-layer chromatography

RP-HPLC:

Reversed-phase high performance liquid chromatography

HR-LC:

High-resolution liquid chromatography

RI:

Refractive index

ELSD:

Evaporative light-scattering detector

ESI:

Electrospray ionization

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

DEPT:

Distortionless enhancement by polarization transfer

HMBC:

Heteronuclear multiple bond connectivity

References

  1. Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010) Complex evolution of bile salts in birds. Auk 127:820–831

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    Article  CAS  PubMed  Google Scholar 

  3. Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010) Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10:133 (23 pages)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagey LR, Iida T, Ogawa S, Adachi Y, Une M, Mushiake K, Maekawa M, Shimada M, Mano N, Hofmann AF (2011) Biliary bile acids in birds of the Cotingidae family: taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid. Steroids 76:1126–1135

    Article  CAS  PubMed  Google Scholar 

  6. Hagey LR, Ogawa S, Kato N, Satoh R, Une M, Mitamura K, Ikegawa S, Hofmann AF, Iida T (2012) A novel varanic acid epimer – (24R,25S)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid – is a major biliary bile acid in two varanid lizards and the Gila monster. Steroids 77:1510–1521

    Article  CAS  PubMed  Google Scholar 

  7. Batta AK, Tint GS, Dayal B, Shefer S, Salen G (1982) Improved synthesis of 3α,7α,12α,24ξ-tetrahydroxy-5β-cholestan-26-oic acid. Steroids 39:693–702

    Article  CAS  PubMed  Google Scholar 

  8. Une M, Nagai F, Kihira K, Kuramoto T, Hoshita T (1983) Synthesis of four diastereoisomers at carbons 24 and 25 of 3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oic acid, intermediates of bile acid biosynthesis. J Lipid Res 24:924–929

    CAS  PubMed  Google Scholar 

  9. Kinoshita T, Miyata M, Ismail SM, Fujimoto Y, Kakinuma K, Ikekawa N, Morisaki M (1988) Synthesis and determination of stereochemistry of four diastereoisomers at the C-24 and C-25 positions of 3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oic acid. Chem Pharm Bull 36:134–141

    Article  CAS  Google Scholar 

  10. Kurosawa T, Sato M, Nakano H, Tohma M (1996) Synthesis of diastereomers of 3α,7α,12α,24-tetrahydroxy- and 3α,7α,24-trihydroxy-5β-cholestan-26-oic acids and their structures. Steroids 61:421–428

    Article  CAS  PubMed  Google Scholar 

  11. Iida T, Kakiyama G, Hibiya Y, Miyata S, Inoue T, Ohno K, Goto T, Mano N, Goto J, Nambara T, Hofmann AF (2006) Chemical synthesis of the 3-sulfooxy-7-N-acetylglucosaminyl-24-amidated conjugates of 3β,7β-dihydroxy-5-cholen-24-oic acid, and related compounds: unusual, major metabolites of bile acid in a patient with Niemann-Pick disease type C1. Steroids 71:18–29

    Article  CAS  PubMed  Google Scholar 

  12. Haslewood GAD, Wootton V (1950) Comparative studies of ‘bile salts’. 1. Preliminary survey. Biochem J 47:584–597

    CAS  PubMed  Google Scholar 

  13. Collings BG, Haslewood GAD (1966) The chemical nature of varanic acid. Biochem J 99:50p–51p

    Google Scholar 

  14. Kuramoto T, Kikuchi H, Sanemori H, Hoshita T (1973) Bile salts of Anura. Chem Pharm Bull 21:952–959

    Article  CAS  PubMed  Google Scholar 

  15. Noma Y, Une M, Kihira K, Yasuda M, Kuramoto T, Hoshita T (1980) Bile acids and bile alcohols of bullfrog. J Lipid Res 21:339–346

    CAS  PubMed  Google Scholar 

  16. Ali SS, Stephenson E, Elliott WH (1982) Bile acids. LXVII. The major bile acids of Varanus monitor. J Lipid Res 23:947–954

    CAS  PubMed  Google Scholar 

  17. Une M, Kuramoto T, Hoshita T (1983) The minor bile acids of the toad, Bufo vulgaris formosus. J Lipid Res 24:1468–1474

    CAS  PubMed  Google Scholar 

  18. Kihira K, Okamoto A, Hoshita T (1987) Identification of new C27 and C24 bile acids in the bile of Alligator mississippiensis. J Biochem 101:1377–1384

    CAS  PubMed  Google Scholar 

  19. Parmentier GG, Janssen GA, Eggermont EA, Eyssen HJ (1979) C27 bile acids in infants with coprostanic acidemia and occurrence of a 3α,7α,24-trihydroxy-5β-C29 dicarboxylic bile acid as a major component in their serum. Eur J Biochem 102:173–183

    Article  CAS  PubMed  Google Scholar 

  20. Kase BF, Björkhem I, Hȧgȧ P, Pedersen JI (1985) Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. J Clin Invest 75:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kase BF, Pedersen JI, Strandvik B, Björkhem I (1985) In vivo and in vitro studies on formation of bile acids in patients with Zellweger syndrome. J Clin Invest 76:2393–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clayton PT, Patel E, Lawson AM, Carruthers RA, Collins J (1990) Bile acid profiles in peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. J Clin Invest 85:1267–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gustafsson J (1980) Biosynthesis of cholic acid in rat liver: formation of cholic acid from 3α,7α,12α-trihydroxy- and 3α,7α,12α,24-tetrahydroxy-5β-cholestanoic acids. Lipids 15:113–121

    Article  CAS  PubMed  Google Scholar 

  24. Une M, Morigami I, Kihira K, Hoshita T (1984) Stereospecific formation of (24E)-3α,7α,12α-trihydroxy-5β-cholest-24-en-26-oic acid and (24R,25S)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oic acid from either (25R)-or (25S)-3α,7α,12α-trihydroxy-5β-cholestan-26-oic acid by rat liver homogenate. J Biochem 96:1103–1107

    CAS  PubMed  Google Scholar 

  25. Une M, Inoue A, Kurosawa T, Tohma M, Hoshita T (1994) Identification of (24E)-3α,7α-dihydroxy-5β-cholest-24-enoic acid and (24R,25S)-3α,7α,24-trihydroxy-5β-cholestanoic acid as intermediates in the conversion of 3α,7α-dihydroxy-5β-cholestanoic acid to chenodeoxycholic acid in rat liver homogenates. J Lipid Res 35:620–624

    CAS  PubMed  Google Scholar 

  26. Une M, Inoue A, Hoshita T (1996) Formation of varanic acid, 3α,7α,12α,24-tetrahydroxy-5β-cholestanoic acid from 3α,7α,12α-trihydroxy-5β-cholestanoic acid in Bombina orientalis. Steroids 61:639–641

    Article  CAS  PubMed  Google Scholar 

  27. Vreken P, Rooij AV, Denis S, Grunsven EGV, Cuebas DA, Wanders RJA (1998) Sensitive analysis of serum 3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oic acid diastereomers using gas chromatography-mass spectrometry and its application in peroxisomal d-bifunctional protein deficiency. J Lipid Res 39:2452–2458

    CAS  PubMed  Google Scholar 

  28. Ferdinandusse S, Denis S, Faust PL, Wanders RJA (2009) Bile acids: the role of peroxisomes. J Lipid Res 50:2139–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan (to T.I., 15K01809) for 2015–2017. Work at the University of California, San Diego was also supported in part by a grant from the American Physiological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Iida.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, R., Ogata, H., Saito, T. et al. Two Major Bile Acids in the Hornbills, (24R,25S)-3α,7α,24-Trihydroxy-5β-cholestan-27-oyl Taurine and Its 12α-Hydroxy Derivative. Lipids 51, 757–768 (2016). https://doi.org/10.1007/s11745-016-4150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4150-0

Keywords

Navigation