Skip to main content
Log in

Celastrus Orbiculatus Thunb. Reduces Lipid Accumulation by Promoting Reverse Cholesterol Transport in Hyperlipidemic Mice

  • Original Article
  • Published:
Lipids

Abstract

Previously, we found that Celastrus orbiculatus Thunb. (COT) decreases athero-susceptibility in lipoproteins and the aorta of guinea pigs fed a high-fat diet, and increases high-density lipoprotein (HDL). In the present study, we investigated the effect of COT in reducing lipid accumulation and promoting reverse cholesterol transport (RCT) in vivo and vitro. Healthy male mice were treated with high-fat diet alone, high-fat diet with COT (10.0 g/kg/d), or general fodder for 6 weeks. Serum levels of total cholesterol (TC), triglyceride (TG), HDL-C, non-HDL-C, and 3H-cholesterol in plasma, liver, bile, and feces were determined. Pathological changes and the levels of TC and TG in liver were examined. The expression of hepatic genes and protein associated with RCT were analyzed. COT administration reduced lipid accumulation in the liver, ameliorated the pathological changes, and lessened liver injury, the levels of TG, TC, and non-HDL-C in plasma were decreased significantly, and COT led to a significant increase in plasma HDL-C and apolipoprotein A (apoA1). 3H-cholesterol in plasma, liver, bile, and feces was also significantly increased in COT-treated mice compared to controls. Both mRNA and protein expression of SRB1, CYP7A1, LDLR, ATP-binding cassette transporters ABCA1, ABCG5, and LXRα were improved in COT-treated mice. An in vitro isotope tracing experiment showed that COT and its bioactive ingredients, such as celastrol, ursolic acid, oleanolic acid, and quercetin, significantly increased the efflux of 3H-cholesterol. They also increased the expression of SRB1, ABCA1, and ABCG1 significantly in macrophages. Our findings provided a positive role of COT in reducing lipid accumulation by promoting RCT. These effects may be achieved by activating the SRB1 and ABC transporter pathway and promoting cholesterol metabolism via the CYP7A1 pathway in vivo. The effective ingredients in vitro are celastrol, ursolic acid, oleanolic acid, and quercetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COT:

Celastrus orbiculatus Thunb

RCT:

Reverse cholesterol transport

HDL-C:

High-density lipoprotein cholesterol

apoA1:

Apolipoprotein A

TC:

Total cholesterol

TG:

Triglyceride

SR-B1:

Scavenger receptor B1

ABCA1:

ATP-binding cassette transporter G1

ABCG1:

ATP-binding cassette transporter A1

CE:

Cholesterol ester

ABCG5:

ATP-binding cassette transporters G5

ABCG8:

ATP-binding cassette transporters G8

CYP7A1:

Cholesterol 7-alpha hydroxylase

SR-B1:

Scavenger receptor class B type 1

LXR:

Liver X receptor

TCMs:

Traditional Chinese medicines

AS:

Atherosclerosis

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

CL:

Celastrol

RT:

Rutin

QC:

Quercetin

KF:

Kaempferol

OA:

Oleanolic acid

UA:

Ursolic acid

RT-PCR:

Real time PCR

LDL-R:

Low-density lipoprotein receptor

LSC:

Liquid scintillation counter

References

  1. Assmann G, Cullen P, Jossa F, Lewis B, Mancini M (1999) Coronary heart disease: reducing the risk: the scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. International task force for the prevention of coronary heart disease. Arterioscler Thromb Vasc Biol 19:1819–1824

    Article  CAS  PubMed  Google Scholar 

  2. Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117:2216–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194

    PubMed  PubMed Central  Google Scholar 

  5. Naik SU, Wang X, DaSilva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ (2006) Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113:90–97

    Article  CAS  PubMed  Google Scholar 

  6. Moon M, Lee MS, Kim CT, Kim Y (2007) Dietary chitosan enhances hepatic CYP7A1 activity and reduces plasma and liver cholesterol concentrations in diet-induced hypercholesterolemia in rats. Nutr Res Pract 1:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A (2006) Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta 1761:655–666

    Article  CAS  PubMed  Google Scholar 

  8. Beltowski J, Wojcicka G, Jamroz-wisniewska A (2009) Adverse effects of statins-mechanisma and consequences. Curr Drug Saf 4:209–228

    Article  CAS  PubMed  Google Scholar 

  9. Qian YY, Zhang H, Hou Y, Yuan L, Li GQ, Guo SY, Hisamits T, Liu YQ (2012) Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathway and shows potent antitumor activity in hepatocarcinomas in vitro and in vivo. Chin J Integr Med 18:752–760

    Article  PubMed  Google Scholar 

  10. Jin HZ, Hwang BY, Kim HS, Lee JH, Kim YH, Lee JJ (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65:89–91

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Si YH, Yao ST, Yang NN, Song GH, Sang H, Zu DD, Xu X, Wang J, Qin SC (2013) Celastrus orbiculatus Thunb. Decreases athero-susceptibility in lipoproteins and the aorta of guinea pigs fed high fat diet. Lipids 48:619–631

    Article  CAS  PubMed  Google Scholar 

  12. Qin L, Qin XP, Wang Z, Zhu BY, Liao DF (2006) Effect of pravastatin on cholesteryl esters in foam cells and the relation with caveolin-1. Acta Physiol Sin 58:47–52 (Chinese, English abstract)

    CAS  Google Scholar 

  13. Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ (1993) Pyrrolidine dithiocar -bamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 191:1301–1308

    Article  CAS  PubMed  Google Scholar 

  14. Chapman MJ, Mills GL, Ledford JH (1975) The distribution and partial characterization of the serum apolipoproteins in the guinea pig. Biochem J 149:423–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Si YH, Song GH, Luo T, Wang JF, Qin SC (2011) Ethanolic extract of propolis promotes reverse cholesterol transport and the expression of ATP-binding cassette transporter A1 and G1 in mice. Lipids 46:805–811

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ (2005) Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 115:2870–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Eck M, Pennings M, Hoekstra M, Out R, Van Berkel TJ (2005) Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 16:307–315

    Article  PubMed  Google Scholar 

  18. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trigatti BL, Krieger M, Rigotti A (2003) Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 23:1732–1738

    Article  CAS  PubMed  Google Scholar 

  20. Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz G, Langmann T, Heimerl S (2001) Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res 42:1513–2018

    CAS  PubMed  Google Scholar 

  23. Malerod L, Juvet L, Hanssen-Bauer A, Eskild W, Berg T (2002) Oxysterol-activated LXRalpha/RXR induces SR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 299:916–923

    Article  CAS  PubMed  Google Scholar 

  24. Bhaskar S, Kumar KS, Krishnan K, Antony H (2013) Quercetin alleviates hypercholes-terolemic diet induced inflammation during progression and regression of atherosclerosis in rabbits. Nutrition 29:219–229

    Article  CAS  PubMed  Google Scholar 

  25. Xiao HB, Lu XY, Sun ZL, Zhang HB (2011) Kaempferol regulates OPN-CD44 pathway to inhibit the athero-genesis of apolipoprotein E deficient mice. Toxicol Appl Pharmacol 257:405–411

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Liang R, Wang L, Yan R, Hou R, Gao S, Yang B (2013) Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. J Ethnopharmacol 48:63–69

    Google Scholar 

  27. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  28. Sang WK, Min SK, Hyun SK, Yunho K, Daekeun S, Jung Han YP, Young HK (2013) Celastrol attenuates adipokine resistin-associated matrix interaction and migration of vascular smooth muscle cells. J Cell Biochem 114:398–408

    Article  Google Scholar 

  29. Buus NH, Hansson NC, Rodriguez-Rodriguez R, Stankevicius E, Andersen MR, Simonsen U (2011) Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice. Eur J Pharmacol 670:519–526

    Article  CAS  PubMed  Google Scholar 

  30. Chang YC, Lee TS, Chiang AN (2012) Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages. J Lipid Res 53:1840–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park MY, Ji GE, Sung MK (2012) Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 57:355–363

    Article  CAS  PubMed  Google Scholar 

  32. Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344

    Article  PubMed  Google Scholar 

  33. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740

    Article  CAS  PubMed  Google Scholar 

  34. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 16:2081–2087

    Article  CAS  Google Scholar 

  35. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T (2011) Anti-inflammatory, antiproliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218:44–52

    Article  CAS  PubMed  Google Scholar 

  36. Juźwiak S, Wójcicki J, Mokrzycki K, Marchlewicz M, Białecka M, Wenda-Rózewicka L, Gawrońska–Szlarz B, Droździk M (2005) Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep 57:604–609

    PubMed  Google Scholar 

  37. Auger C, Teissedre PL, Gérain P, Lequeux N, Bornet A, Serisier S, Besançon P, Caporiccio B, Cristol JP, Rouanet JM (2005) Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. J Agric Food Chem 53:2015–2021

    Article  CAS  PubMed  Google Scholar 

  38. Chirumbolo S (2010) The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 9:263–285

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Wang QJ, Zhu DN, Yang Y (2008) Reinioside C, a triterpene saponin of Polygala aureocauda Dunn, exerts hypolipidemic effect on hyperlipidemic mice. Phytother Res 22:159–164

    Article  CAS  PubMed  Google Scholar 

  40. Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20

    Article  CAS  PubMed  Google Scholar 

  41. Somova LO, Nadar A, Rammanan P, Shode FO (2003) Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 10:115–121

    Article  CAS  PubMed  Google Scholar 

  42. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49:57–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by financial donations from the Taishan Scholars Foundation of Shandong Province (200867), University of Science and Technology Plan Projects Fund of Shandong Province (J121M01), Taian City Technology Development Plan (201440774-03), Key development projects of Shandong province (2015GSF119008), and the Shandong Provincial Natural Science Fund (ZR2013HL063, ZR2013HQ014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shucun Qin.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exist.

Additional information

Y. Zhang, Y. Si contributed equally to this study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Si, Y., Zhai, L. et al. Celastrus Orbiculatus Thunb. Reduces Lipid Accumulation by Promoting Reverse Cholesterol Transport in Hyperlipidemic Mice. Lipids 51, 677–692 (2016). https://doi.org/10.1007/s11745-016-4145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4145-x

Keywords

Navigation