Skip to main content
Log in

Analysis of Plasmalogen Species in Foodstuffs

  • Original Article
  • Published:
Lipids

Abstract

Ethanolamine plasmalogen (PlsEtn), which is present at high levels in brains, is believed to be involved in neuronal protection. The present study was performed to search for PlsEtn resources in foodstuffs. The foodstuffs examined showed a wide range of PlsEtn contents from 5 to 549 μmol/100 g wet wt. The marine invertebrates, blue mussel, and ascidian had high PlsEtn contents (over 200 μmol/100 g wet wt). Profiling of the molecular species showed that the predominant fatty acids of PlsEtn species were 20:5 (EPA) and 22:6 (DHA) at the sn-2 position of the glycerol moiety in marine foodstuffs, whereas major PlsEtn species in land foodstuffs were 20:4. Following quantitative analysis by multiple reaction monitoring, the ascidian viscera were shown to contain the highest levels of 18:0/20:5-PlsEtn and 18:0/22:6-PlsEtn (86 and 68 μmol/100 g wet wt, respectively). In order to evaluate a neuronal antiapoptotic effect of these PlsEtn species, human neuroblastoma SH-SY5Y cells were treated with ethanolamine glycerophospholipid (EtnGpl), purified from the ascidian viscera, under serum starvation conditions. Extrinsic EtnGpl from ascidian viscera showed stronger suppression of cell death induced by serum starvation than with bovine brain EtnGpl. The EtnGpl from ascidian viscera strongly suppressed the activation of caspase 3. These results suggest that PlsEtn, especially that containing EPA and DHA, from marine foodstuffs is potentially useful for a therapeutic dietary supplement preventing neurodegenerative diseases, such as Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

DHA:

Docosahexaenoic acid (22:6)

DMEM:

Dulbecco’s modified Eagle’s medium

EPA:

Eicosapentaenoic acid (20:5)

EtnGpl:

Ethanolamine glycerophospholipid

FBS:

Fetal bovine serum

HPLC:

High-performance liquid chromatography

PakEtn:

1-O-Alkyl-2-acyl-sn-glycero-3-phosphoethanolamine

PlsEtn:

1-O-Alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine or ethanolamine plasmalogen

PtdEtn:

1,2-Diacyl-sn-glycero-3-phosphoethanolamine

PUFA:

Polyunsaturated fatty acids

TLC:

Thin-layer chromatography

References

  1. Dembitsky VM (1988) Quantification of plasmalogen, alkylacyl and diacyl glycerophospholipids by micro-thin-layer chromatography. J Chromatogr 436:467–473

    Article  CAS  PubMed  Google Scholar 

  2. Yang HC, Farooqui AA, Horrocks LA (1996) Plasmalogen-selective phospholipase A2 and its role in signal transduction. J Lipid Mediator Cell Signal 14:9–13

    Article  CAS  Google Scholar 

  3. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260

    Article  CAS  PubMed  Google Scholar 

  4. Hack MH, Helmy FM (1977) Thin-layer chromatographic resolution of molecular species of ethanolamine plasmalogen quantitatively unique to myelin. J Chromatogr 135:229–234

    Article  CAS  PubMed  Google Scholar 

  5. Glaser PE, Gross RW (1994) Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33:5805–5812

    Article  CAS  PubMed  Google Scholar 

  6. Wallner S, Schimtz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164:573–589

    Article  CAS  PubMed  Google Scholar 

  7. Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T (2011) Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radical Biol Med 50:892–898

    Article  CAS  Google Scholar 

  8. Luoma AM, Kuo F, Cakici O, Inouye H, Crowther MN, Denninger AR, Avila RL, Brites P, Kirschner DA (2015) Plasmalogen phospholipids protect internal myelin form oxidative damage. Free Radical Biol Med 84:296–310

    Article  CAS  Google Scholar 

  9. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779

    Article  CAS  PubMed  Google Scholar 

  10. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  11. Yamatsuji T, Matsui T, Okamoto T, Komatsuzaki K, Takeda S, Fukumoto H, Iwatsubo T, Suzuki N, Asami-Odaka A, Ireland S, Kinane TB, Giambarella U, Nishimoto I (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272:1349–1352

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 698:223–226

    Article  CAS  PubMed  Google Scholar 

  13. Wells K, Farooqui AA, Liss L, Horrocks LA (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem Res 20:1329–1333

    Article  CAS  PubMed  Google Scholar 

  14. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ (1999) Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58:740–747

    Article  CAS  PubMed  Google Scholar 

  15. Miyazawa T, Kanno S, Eitsuka T, Nakagawa K (2006) Plasmalogen: a short review and newly-discovered functions. In: Knapp HR, Huang YS, Yanagita Y (eds) Dietary Fats and Risk of Chronic Disease. AOCS, Urbana

    Google Scholar 

  16. Yamashita S, Kanno S, Nakagawa K, Kinoshita M, Miyazawa T (2015) Extrinsic plasmalogen suppresses neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: importance of plasmalogen molecular species. RSC Adv 5:61012–61020

    Article  CAS  Google Scholar 

  17. Yamashita S, Abe A, Nakagawa K, Kinoshita M, Miyazawa T (2014) Separation and detection of plasmalogen in marine invertebrates by high-performance liquid chromatography with evaporative light-scattering detection. Lipids 49:1261–1273

    Article  CAS  PubMed  Google Scholar 

  18. Yamashita S, Honjo A, Aruga M, Nakagawa K, Miyazawa T (2014) Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. J Oleo Sci 63:423–430

    Article  CAS  PubMed  Google Scholar 

  19. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  20. Rouser G, Kritchevsky G, Simon G, Nelson GJ (1967) Quantitative analysis of brain and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids 2:37–40

    Article  CAS  PubMed  Google Scholar 

  21. Higuchi O, Nakagawa K, Tsuzuki T, Suzuki T, Oikawa S, Miyazawa T (2006) Aminophospholipid glycation and its inhibitor screening system: a new role of pyridoxal 5′-phosphate as the inhibitor. J Lipid Res 47:964–974

    Article  CAS  PubMed  Google Scholar 

  22. Viswanathan CV, Phillips F, Lundberg WO (1968) Two-dimensional reaction thin-layer chromatography in the analysis of phosphatide plasmalogens. J Chromatogr 35:66–71

    Article  CAS  PubMed  Google Scholar 

  23. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520

    Article  CAS  PubMed  Google Scholar 

  24. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  CAS  PubMed  Google Scholar 

  25. Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274:30651–30656

    Article  CAS  PubMed  Google Scholar 

  26. Maeba R, Ueta N (2003) Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J Lipid Res 44:164–171

    Article  CAS  PubMed  Google Scholar 

  27. Maeba R, Ueta N (2003) Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochem Biophys Res Commun 302:265–270

    Article  CAS  PubMed  Google Scholar 

  28. Nishimukai M, Wakisaka T, Hara H (2003) Ingestion of plasmalogen markedly increased plasmalogen levels of blood plasma in rats. Lipids 38:1227–1235

    Article  CAS  PubMed  Google Scholar 

  29. Kraffe E, Soudant P, Marty Y (2004) Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 39:59–66

    Article  CAS  PubMed  Google Scholar 

  30. Scott TW, Ashes JR, Fleck E, Gulati SK (1993) Effect of fish oil supplementation on the composition of molecular species of choline and ethanolamine glycerophospholipids in ruminant muscle. J Lipid Res 34:827–835

    CAS  PubMed  Google Scholar 

  31. Ohshima T, Wada S, Koizumi C (1989) 1-O-Alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids in white muscle of bonito Euthynnus pelamis (Linnaeus). Lipids 24:363–370

    Article  CAS  Google Scholar 

  32. Medina I, Aubourg SP, Martin RP (1995) Composition of phospholipids of white muscle of 6 tuna species. Lipids 30:1127–1135

    Article  CAS  PubMed  Google Scholar 

  33. Berry KAZ, Murphy RC (2004) Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J Am Soc Mass Spectrom 15:1499–1508

    Article  Google Scholar 

  34. Yunoki K, Kukino O, Nadachi Y, Fujino T, Ohnishi M (2008) Separation and determination of functional complex lipids from chicken skin. J Am Oil Chem Soc 85:427–433

    Article  CAS  Google Scholar 

  35. Jeong BY, Ohshima T, Koizumi C (1996) Hydrocarbon chain distribution of ether phospholipids of the ascidian Halocynthia roretzi and the sea urchin Strongylocentrotus intermedius. Lipids 31:9–18

    Article  CAS  PubMed  Google Scholar 

  36. Hanuša LO, Dmitri OL, Shkrobc I, Dembitsky VM (2009) Plasmalogens, fatty acids and alkyl glyceryl ethers of marine and freshwater clams and mussels. Food Chem 116:491–498

    Article  Google Scholar 

  37. Tomaz ACD, de Miranda GEC, de Souza MDV, de Cunha EVL (2012) Analysis and characterization of methyl esters of fatty acids of some Gracilaria species. Biochem Syst Ecol 44:303–306

    Article  CAS  Google Scholar 

  38. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  PubMed  Google Scholar 

  39. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  40. Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T (2013) Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508

    Article  PubMed Central  PubMed  Google Scholar 

  41. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ, Mucke L (1997) Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responss disease. Brain Res Rev J 23:47–61

    Article  CAS  Google Scholar 

  42. Hara H, Wakisaka T, Aoyama Y (2003) Lymphatic absorption of plasmalogen in rats. Br J Nutr 90:29–32

    Article  CAS  PubMed  Google Scholar 

  43. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  44. Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109:577–585

    Article  CAS  PubMed  Google Scholar 

  45. Sutcliffe JG, Hedlund PB, Thomas EA, Bloom FE, Hilbush BS (2011) Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer’s disease. J Neurosci Res 89:808–814

    Article  CAS  PubMed  Google Scholar 

  46. Skerrett R, Pellegrino MP, Casali BT, Taraboanta L, Landreth GE (2015) Combined liver X receptor/peroxisome proliferator-activated receptor γ agonist treatment reduces amyloid β levels and improves behavior in amyloid precursor protein/presenilin 1 mice. J Biol Chem 290:21591–21602

    Article  CAS  PubMed  Google Scholar 

  47. Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T (2012) Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 9:197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yamashita S, Kiko T, Fujiwara H, Hashimoto M, Nakagawa K, Kinoshita M, Furukawa K, Arai H, Miyazawa T (2015) Alterations in the levels of amyloid-β, phospholipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer’s disease: Possible interactions between amyloid-β and these lipids. J Alzheimers Dis. doi:10.3233/JAD-150640

  49. Onodera T, Futai E, Kan E, Abe N, Uchida T, Kamio Y, Kaneko J (2015) Phosphatidylethanolamine plasmalogen enhances the inhibiting effect of phosphatidylethanolamine on γ-secretase activity. J Biochem 157:301–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Miyazawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, S., Kanno, S., Honjo, A. et al. Analysis of Plasmalogen Species in Foodstuffs. Lipids 51, 199–210 (2016). https://doi.org/10.1007/s11745-015-4112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4112-y

Keywords

Navigation