Skip to main content
Log in

Double Bond Position Plays an Important Role in Delta-9 Desaturation and Lipogenic Properties of Trans 18:1 Isomers in Mouse Adipocytes

  • Communication
  • Published:
Lipids

Abstract

The objective of this research was to study the delta-9 desaturation of individual trans (t) fatty acids that can be found in ruminant fat or partially hydrogenated vegetable oils (PHVO) and determine their effects on lipogenic gene expression in adipocytes. It was hypothesized that delta-9 desaturation and lipogenic properties of t-18:1 isomers depend on the position of double bond. Differentiated 3T3-L1 adipocytes were treated with 200 µM of t6–18:1, t9–18:1, t11–18:1, t13–18:1 or t16–18:1, cis (c)-9 18:1 or bovine serum albumin (BSA) vehicle control for 48 h. Cells were then harvested for fatty acid and gene expression analyses using gas chromatography and quantitative PCR respectively. Among t-18:1 isomers, t13–18:1 and t11–8:1 had the greatest percent delta-9 desaturation (44 and 41 % respectively) followed by t16–18:1 and t6–18:1 (32 and 17 % respectively), while c9–18:1 and t9–18:1 did not undergo delta-9 desaturation. Trans9–18:1 up-regulated (P < 0.05) the expression of lipogenic genes including fatty acid synthase and stearoyl-CoA desaturase-1 (P < 0.05), whereas the expression of these genes were not affected with other t-18:1 isomers (P > 0.05). Consistent with gene expression results, t9–18:1 increased the de novo lipogenic index (16:0/18:2n-6) compared with control cells and increased delta-9 desaturation index (c9–16:1/18:0) compared to other t-18:1 isomers (P < 0.05). The current study provides further evidence that the predominant trans fatty acid in PHVO (t9–18:1) has isomer specific lipogenic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ACC:

Acetyl-CoA carboxylase

AFABP:

Adipocyte fatty acid binding protein

Ag+ SPE:

Silver-ion solid-phase extraction

Ag+-HPLC:

Silver-ion high performance liquid chromatography

C :

Cis

DNLI:

De novo lipogenic index

ELOVL5:

Elongation of very long chain fatty acids protein 5

FAS:

Fatty acid synthase

PHVO:

Partially hydrogenated oils

PPARγ:

Peroxisome proliferator-activated receptor gamma

SCD1:

Stearoyl-CoA desaturase-1

SREBP-1:

Sterol regulatory element-binding proteins-1

References

  1. Mensink RP, Katan MB (1993) Trans monounsaturated fatty acids in nutrition and their impact on serum lipoprotein levels in man. Prog Lipid Res 32:111–122

    Article  CAS  PubMed  Google Scholar 

  2. Riserus U (2006) Trans fatty acids and insulin resistance. Atheroscler Suppl 7:37–39

    Article  CAS  PubMed  Google Scholar 

  3. Mozaffarian D, Pischon T, Hankinson SE, Rifai N, Joshipura K, Willett WC, Rimm EB (2004) Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 79:606–612

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 135:562–566

    CAS  PubMed  Google Scholar 

  5. Rao MS (2006) Lipid Metabolism and Liver Inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858

    Article  PubMed  Google Scholar 

  6. Field AE, Willett WC, Lissner L, Colditz GA (2007) Dietary fat and weight gain among women in the Nurses’ health study. Obesity 15:967–976

    Article  PubMed  Google Scholar 

  7. Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD, Rudel LL (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity 15:1675–1684

    Article  CAS  PubMed  Google Scholar 

  8. Koh-Banerjee P, Chu NF, Spiegelman D, Rosner B, Colditz G, Willett W, Rimm E (2003) Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9 year gain in waist circumference among 16,587 USA men. Am J Clin Nutr 78:719–727

    CAS  PubMed  Google Scholar 

  9. Shao F, Ford DA (2014) Elaidic acid increases hepatic lipogenesis by mediating sterol regulatory element binding protein-1c activity in HuH-7 cells. Lipids 49:403–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vendel Nielsen L, Krogager TP, Young C, Ferreri C, Chatgilialoglu C, Nørregaard Jensen O, Enghild JJ (2013) Effects of elaidic acid on lipid metabolism in HepG2 cells, investigated by an integrated approach of lipidomics transcriptomics and proteomics. PLoS One 8:e74283

    Article  PubMed Central  PubMed  Google Scholar 

  11. Minville-Walz M, Gresti J, Pichon L, Bellenger S, Bellenger J, Narce M, Rialland M (2012) Distinct regulation of stearoyl-CoA desaturase 1 gene expression by cis and trans C18:1 fatty acids in human aortic smooth muscle cells. Genes Nutr 7:209–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Vahmani P, Meadus WJ, Turner TD, Duff P, Rolland DC, Mapiye C, Dugan MER (2015) Individual trans 18:1 isomers are metabolised differently and have distinct effects on lipogenesis in 3T3-L1 adipocytes. Lipids 50:195–204

    Article  CAS  PubMed  Google Scholar 

  13. Jacome-Sosa MM, Borthwick F, Mangat R, Uwiera R, Reaney MJ, Shen J, Quiroga AD, Jacobs RL, Lehner R, Proctor SD (2014) Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. J Nutr Biochem 25:692–701

    Article  CAS  PubMed  Google Scholar 

  14. Mohankumar SK, Hanke D, Siemens L, Cattini A, Enns J, Shen J, Reaney M, Zahradka P, Taylor CG (2013) Dietary supplementation of trans-11-vaccenic acid reduces adipocyte size but neither aggravates nor attenuates obesity-mediated metabolic abnormalities in fa/fa Zucker rats. Brit J Nutr 109:1628–1636

    Article  CAS  PubMed  Google Scholar 

  15. Anadón A, Martínez-Larrañaga MR, Martínez MA, Ares I, Ramos E, Gómez-Cortés P, Juárez M, De La Fuente MA (2011) A 4 week repeated oral dose toxicity study of dairy fat naturally enriched in vaccenic, rumenic and α-linolenic acids in rats. J Agric Food Chem 59:8036–8046

    Article  PubMed  Google Scholar 

  16. Bassett CMC, Edel AL, Patenaude AF, McCullough RS, Blackwood DP, Chouinard PY, Paquin P, Lamarche B, Pierce GN (2010) Dietary vaccenic acid has antiatherogenic effects in LDLr-/- mice. J Nutr 140:18–24

    Article  CAS  PubMed  Google Scholar 

  17. Tyburczy C, Major C, Lock AL, Destaillats F, Lawrence P, Brenna JT, Salter AM, Bauman DE (2009) Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in golden Syrian hamsters. J Nutr 139:257–263

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR, Wright DC, Vine DF, Field CJ, Proctor SD (2009) Trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR: LA-cp rats. J Nutr 139:2049–2054

    Article  CAS  PubMed  Google Scholar 

  19. Wolff RL, Combe NA, Destaillats F, Boue C, Precht D, Molkentin J, Entressangles B (2000) Follow-up of the delta4 to delta16 trans-18:1 isomer profile and content in French processed foods containing partially hydrogenated vegetable oils during the period 1995–1999. Analytical and nutritional implications. Lipids 35:815–825

    Article  CAS  PubMed  Google Scholar 

  20. Dugan M, Kramer J, Robertson W, Meadus W, Aldai N, Rolland D (2007) Comparing subcutaneous adipose tissue in beef and muskox with emphasis on trans 18:1 and conjugated linoleic acids. Lipids 42:509–518

    Article  CAS  PubMed  Google Scholar 

  21. Ratnayake WN, Swist E, Zoka R, Gagnon C, Lillycrop W, Pantazapoulos P (2014) Mandatory trans fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009–2011. Am J Clin Nutr 100:1036–1040

    Article  CAS  PubMed  Google Scholar 

  22. Brouwer IA, Wanders AJ, Katan MB (2013) Trans fatty acids and cardiovascular health: research completed. Eur J Clin Nutr 67:541–547

    Article  CAS  PubMed  Google Scholar 

  23. Turner TD, Meadus WJ, Mapiye C, Vahmani P, Lopez-Campos O, Duff P, Rolland DC, Church JS, Dugan ME (2015) Isolation of alpha-linolenic acid biohydrogenation products by combined silver ion solid phase extraction and semi-preparative high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 980:34–40

    Article  CAS  PubMed  Google Scholar 

  24. Juárez M, Dugan MER, Aalhus JL, Aldai N, Basarab JA, Baron VS, McAllister TA (2011) Effects of vitamin E and flaxseed on rumen-derived fatty acid intermediates in beef intramuscular fat. Meat Sci 88:434–440

    Article  PubMed  Google Scholar 

  25. Mapiye C, Turner T, Rolland D, Basarab J, Baron V, McAllister T, Block H, Uttaro B, Aalhus J, Dugan M (2013) Adipose tissue and muscle fatty acid profiles of steers fed red clover silage with and without flaxseed. Livest Sci 151:11–20

    Article  Google Scholar 

  26. Evans M, Park Y, Pariza M, Curtis L, Kuebler B, McIntosh M (2001) Trans-10, cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and aP2 expression in 3T3-L1 preadipocytes. Lipids 36:1223–1232

    Article  CAS  PubMed  Google Scholar 

  27. Sera RK, McBride JH, Higgins SA, Rodgerson DO (1994) Evaluation of reference ranges for fatty acids in serum. J Clin Lab Anal 8:81–85

    Article  CAS  PubMed  Google Scholar 

  28. Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 72:5–7

    Article  CAS  PubMed  Google Scholar 

  29. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S–3126S

    CAS  PubMed  Google Scholar 

  30. Pollard MR, Gunstone FD, James AT, Morris LJ (1980) Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids 15:306–314

    Article  CAS  PubMed  Google Scholar 

  31. Kadegowda AKG, Connor EE, Teter BB, Sampugna J, Delmonte P, Piperova LS, Erdman RA (2010) Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J Nutr 140:919–924

    Article  CAS  PubMed  Google Scholar 

  32. Christianson JL, Nicoloro S, Straubhaar J, Czech MP (2008) Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem 283:2906–2916

    Article  CAS  PubMed  Google Scholar 

  33. Yao-Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, Phanavanh B, Ranganathan G, McGehee RE Jr, Kern PA (2008) Stearoyl-CoA desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab 93:4431–4439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Matsubara Y, Kano K, Kondo D, Mugishima H, Matsumoto T (2009) Differences in adipocytokines and fatty acid composition between two adipocyte fractions of small and large cells in high-fat diet-induced obese mice. Ann Nutr Metab 54:258–267

    Article  CAS  PubMed  Google Scholar 

  35. Sampath H, Ntambi JM (2011) The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann N Y Acad Sci 1243:47–53

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Ji J-Y, Tian L, Pestell RG (2014) Transcriptional regulation of lipogenesis as a therapeutic target for cancer treatment. nuclear signaling pathways and targeting transcription in cancer. Springer, New York, pp 259–275

    Book  Google Scholar 

  37. Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS (2001) Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem 276:4365–4372

    Article  CAS  PubMed  Google Scholar 

  38. Takeuchi Y, Yahagi N, Izumida Y, Nishi M, Kubota M, Teraoka Y, Yamamoto T, Matsuzaka T, Nakagawa Y, Sekiya M, Iizuka Y, Ohashi K, J-i Osuga, Gotoda T, Ishibashi S, Itaka K, Kataoka K, Nagai R, Yamada N, Kadowaki T, Shimano H (2010) Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit. J Biol Chem 285:11681–11691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Study funding was provided through AAFC-Peer Review program. P. Vahmani acknowledges NSERC post-doctoral funding provided by the AAFC-Peer Review program. Mr. Chris Sehn is acknowledged for his assistance with gene expression and fatty acid analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. R. Dugan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahmani, P., Meadus, W.J., Mapiye, C. et al. Double Bond Position Plays an Important Role in Delta-9 Desaturation and Lipogenic Properties of Trans 18:1 Isomers in Mouse Adipocytes. Lipids 50, 1253–1258 (2015). https://doi.org/10.1007/s11745-015-4080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4080-2

Keywords

Navigation