Skip to main content
Log in

Discovery of a Novel Linoleate Dioxygenase of Fusarium oxysporum and Linoleate Diol Synthase of Colletotrichum graminicola

  • Original Article
  • Published:
Lipids

Abstract

Fungal pathogens constitute serious threats for many forms of life. The pathogenic fungi Fusarium and Colletotrichum and their formae speciales (f. spp.) infect many types of crops with severe consequences and Fusarium oxysporum can also induce keratitis and allergic conditions in humans. These fungi code for homologues of dioxygenase–cytochrome P450 (DOX–CYP) fusion proteins of the animal heme peroxidase (cyclooxygenase) superfamily. The objective was to characterize the enzymatic activities of the DOX–CYP homologue of Colletotrichum graminicola (EFQ34869) and the DOX homologue of F. oxysporum (EGU79548). The former oxidized oleic and linoleic acids in analogy with 7,8-linoleate diol synthases (LDSs), but with the additional biosynthesis of 8,11-dihydroxylinoleic acid. The latter metabolized fatty acids to hydroperoxides with broad substrate specificity. It oxidized 20:4n-6 and 18:2n-6 to hydroperoxides with an R configuration at the (n-10) positions, and other n-6 fatty acids in the same way. [11S-2H]18:2n-6 was oxidized with retention and [11R-2H]18:2n-6 with loss of deuterium, suggesting suprafacial hydrogen abstraction and oxygen insertion. Fatty acids of the n-3 series were oxidized less efficiently and often to hydroperoxides with an R configuration at both (n-10) and (n-7) positions. The enzyme spans 1426 amino acids with about 825 residues in the N-terminal domain with DOX homology and 600 residues at the C-terminal domain without homology to other enzymes. We conclude that fungal oxylipins can be formed by two novel subfamilies of cyclooxygenase-related DOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOS:

Allene oxide synthase(s)

CP:

Chiral phase

CYP:

Cytochrome(s) P450

DiHODE:

Dihydroxyoctadecadienoic acid

DOX:

Dioxygenase(s)

EAS:

Epoxy alcohol synthase(s)

H(P)ODE:

Hydro(pero)xyoctadecadienoic acid

8R-H(P)ODE:

8(R)-Hydro(pero)xy-9(Z),12(Z)–octadecadienoic acid

9R-H(P)ODE:

9R-Hydro(pero)xy-10(E),12(Z)–octadecadienoic acid

HPOME:

Hydroperoxyoctadecamonoenoic acid

H(P)OTrE:

Hydro(pero)xyoctadecatrienoic acid

9R-H(P)OTrE:

9R-Hydro(pero)xy-10(E),12(Z),15(Z)–octadecatrienoic acid

LC–MS:

Liquid chromatography–mass spectrometry

LDS:

Linoleate diol synthase(s)

NP:

Normal phase

RP:

Reversed phase

TIC:

Total ion current

References

  1. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  2. Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  3. Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111:5821–5865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Van Bogaert IN, Groeneboer S, Saerens K, Soetaert W (2011) The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–221

    Article  PubMed  Google Scholar 

  5. Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hamberg M, Ponce de Leon I, Rodriguez MJ, Castresana C (2005) Alpha-dioxygenases. Biochem Biophys Res Commun 338:169–174

    Article  CAS  PubMed  Google Scholar 

  7. Brodhun F, Göbel C, Hornung E, Feussner I (2009) Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J Biol Chem 284:11792–11805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Goulah CC, Zhu G, Koszelak-Rosenblum M, Malkowski MG (2013) The crystal structure of alpha-dioxygenase provides insight into diversity in the cyclooxygenase-peroxidase superfamily. Biochemistry 52:1364–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Su C, Sahlin M, Oliw EH (1998) A protein radical and ferryl intermediates are generated by linoleate diol synthase, a ferric hemeprotein with dioxygenase and hydroperoxide isomerase activities. J Biol Chem 273:20744–20751

    Article  CAS  PubMed  Google Scholar 

  10. Garscha U, Jernerén F, Chung D, Keller NP, Hamberg M, Oliw EH (2007) Identification of dioxygenases required for Aspergillus development. studies of products, stereochemistry, and the reaction mechanism. J Biol Chem 282:34707–34718

    Article  CAS  PubMed  Google Scholar 

  11. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  12. Seyedmousavi S, Guillot J, Tolooe-Zarrin A, Verweij PE, de Hoog GS (2015) Neglected fungal zoonoses: Hidden threats to man and animals. Clin Microbiol Infect. 21:416–425

    Article  PubMed  Google Scholar 

  13. Lee DS, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann I, Jernerén F, Oliw EH (2013) Expression of fusion proteins of Aspergillus terreus reveals a novel allene oxide synthase. J Biol Chem 288:11459–11469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hoffmann I, Oliw EH (2013) Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum. J Lipid Res 54:3471–3480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hoffmann I, Jernerén F, Oliw EH (2014) Epoxy alcohol synthase of the rice blast fungus represents a novel subfamily of dioxygenase-cytochrome P450 fusion enzymes. J Lipid Res 55:2113–2123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brodhun F, Schneider S, Göbel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with one active heme. Biochem J 425:553–565

    Article  CAS  PubMed  Google Scholar 

  18. Jernerén F, Oliw EH (2012) The fatty acid 8,11-diol synthase of Aspergillus fumigatus is inhibited by imidazole derivatives and unrelated to PpoB. Lipids 47:707–717

    Article  PubMed  Google Scholar 

  19. Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    Article  CAS  PubMed  Google Scholar 

  20. Vacher G, Niculita-Hirzel H, Roger T (2015) Immune responses to airborne fungi and non-invasive airway diseases. Semin Immunopathol 37:83–96

    Article  CAS  PubMed  Google Scholar 

  21. Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Gen Biol 48:4–14

    Article  CAS  Google Scholar 

  22. Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I (2013) An iron 13S-lipoxygenase with an alpha-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8:e64919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Garscha U, Nilsson T, Oliw EH (2008) Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 872:90–98

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann I, Jernerén F, Garscha U, Oliw EH (2011) Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain. a comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase. Arch Biochem Biophys 506:216–222

    Article  CAS  PubMed  Google Scholar 

  25. Schneider C, Boeglin WE, Brash AR (2000) Enantiomeric separation of hydroxy eicosanoids by chiral column chromatography: effect of the alcohol modifier. Anal Biochem 287:186–189

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann I, Oliw EH (2013) 7,8- and 5,8-Linoleate diol synthases support the heterolytic scission of oxygen-oxygen bonds by different amide residues. Arch Biochem Biophys 539:87–91

    Article  CAS  PubMed  Google Scholar 

  27. Murphy RC, Barkley RM, Zemski Berry K, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S (2005) Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 346:1–42

    Article  CAS  PubMed  Google Scholar 

  28. Gao B, Boeglin WE, Brash AR (2010) Omega-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1801:58–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Oliw EH, Garscha U, Nilsson T, Cristea M (2006) Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry. Anal Biochem 354:111–126

    Article  CAS  PubMed  Google Scholar 

  30. Jernerén F, Garscha U, Hoffmann I, Hamberg M, Oliw EH (2010) Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase and 8,11-hydroperoxide isomerase of Aspergillus clavatus. Biochim Biophys Acta 1801:503–507

    Article  PubMed  Google Scholar 

  31. Jernerén F, Hoffmann I, Oliw EH ((2010)) Linoleate 9R-dioxygenase and allene oxide synthase activities of Aspergillus terreus. Arch Biochem Biophys 495:67–73 (Erratum 2010; 500; 210)

    Article  PubMed  Google Scholar 

  32. Jernerén F, Eng F, Hamberg M, Oliw EH (2012) Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae. Lipids 47:65–73

    Article  PubMed  Google Scholar 

  33. Imbusch R, Mueller MJ (2000) Analysis of oxidative stress and wound-inducible dinor isoprostanes F(1) (phytoprostanes F(1)) in plants. Plant Physiol 124:1293–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huss K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Munsterkotter M, Freitag M, Humpf HU, Guldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fox SR, Akpinar A, Prabhune AA, Friend J, Ratledge C (2000) The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-Hydroxy-9Z,12Z-octadecadienoic acid. Lipids 35:23–30

    Article  CAS  PubMed  Google Scholar 

  36. Wadman MW, van Zadelhoff G, Hamberg M, Visser T, Veldink GA, Vliegenthart JF (2005) Conversion of linoleic acid into novel oxylipins by the mushroom Agaricus bisporus. Lipids 40:1163–1170

    Article  CAS  PubMed  Google Scholar 

  37. Cross BE, Webster GRB (1970) New metabolites of Gibberella fujikuroi. J Chem Soc C 13:1838–1842

    Google Scholar 

  38. Miersch O, Brücknera B, Schmidt J, Sembdner G (1992) Cyclopentane fatty acids from Gibberella fujikuroi. Phytochemistry. 31:3835–3837

    Article  CAS  Google Scholar 

  39. Cole SJ, Yoon AJ, Faull KF, Diener AC (2014) Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine–conjugated jasmonates. Mol Plant Pathol 15:589–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tsukada K, Takahashi K, Nabeta K (2010) Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry 71:2019–2023

    Article  CAS  PubMed  Google Scholar 

  41. Jernerén F, Sesma A, Franceschetti M, Hamberg M, Oliw EH (2010) Gene deletion of 7,8-linoleate diol synthase of the rice blast fungus: studies on pathogenicity, stereochemistry, and oxygenation mechanisms. J Biol Chem 285:5308–5316

    Article  PubMed Central  PubMed  Google Scholar 

  42. Scala V, Giorni P, Cirlini M, Ludovici M, Visentin I, Cardinale F, Fabbri AA, Fanelli C, Reverberi M, Battilani P, Galaverna G, Dall’Asta C (2014) LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Front Microbiol 5:1–14

    Article  Google Scholar 

  43. Ludovici M, Ialongo C, Reverberi M, Beccaccioli M, Scarpari M, Scala V (2014) Quantitative profiling of oxylipins through comprehensive LC–MS/MS analysis of Fusarium verticillioides and maize kernels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:2026–2033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Vetenskapsrådet (03X-06523), The Knut and Alice Wallenberg Foundation (KAW 2004.0123), and Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Sooman.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

MS2: Wennman and Oliw, confirmed by recombinant expression (unpublished information).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sooman, L., Oliw, E.H. Discovery of a Novel Linoleate Dioxygenase of Fusarium oxysporum and Linoleate Diol Synthase of Colletotrichum graminicola . Lipids 50, 1243–1252 (2015). https://doi.org/10.1007/s11745-015-4078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4078-9

Keywords

Navigation