Skip to main content
Log in

Natural Rumen-Derived trans Fatty Acids Are Associated with Metabolic Markers of Cardiac Health

  • Original Article
  • Published:
Lipids

Abstract

Evidence suggests that industrial trans fatty acids (iTFA) impair lipid profiles while ruminant trans fatty acids (rTFA) may lower insulin resistance and blood pressure. The objective of this article was to determine if the plasma phospholipid percentage of rTFA is associated with a favorable cardiometabolic profile. We collected fasting blood samples from 200 individuals from Quebec city (QC, Canada) aged from 18 to 55 years old, including 100 obese (BMI ≥ 30 kg m−2) and 100 non-obese (BMI < 30 kg m−2) men and women. Fatty acid levels in plasma phospholipids were determined using gas chromatography. After separating the subjects into two groups, according to the median percentage of rTFA in plasma phospholipids, participants in the group with higher percentages of rTFA (0.86 ± 0.24 %) had higher adiponectin levels (p = 0.01) and a lower blood pressure (systolic, p = 0.005; diastolic, p = 0.04). In contrast, concentrations in plasma phospholipids of elaidic acid, a major iTFA, are positively correlated with glycemia in non-obese subjects (p = 0.01) and with both triacylglycerol (TAG) (p = 0.0007) and total cholesterol (TC) (p = 0.009) in obese subjects. These data suggest that rTFA may have beneficial effects on cardiometabolic risk factors conversely to their counterpart iTFA. Dietary sources of TFA should be taken into account in future cardiometabolic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CLA:

Conjugated linoleic acid

CRP:

C-reactive protein

CVD:

Cardiovascular diseases

FA:

Fatty acid

HOMA-IR:

Homeostatic model of the assessment of insulin resistance

iTFA:

Industrial trans fatty acid

MetS:

Metabolic syndrome

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

rTFA:

Ruminant trans fatty acid

SFA:

Saturated fatty acids

T2D:

Type 2 diabetes

TAG:

Triacylglycerol

TC:

Total cholesterol

TFA:

trans Fatty acids

References

  1. International Diabetes Federation (2013) IDF diabetes atlas, 6th edn. Brussels

  2. National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  3. Mozumdar A, Liguori G (2011) Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 34:216–219. doi:10.2337/dc10-0879

    Article  PubMed Central  PubMed  Google Scholar 

  4. Andersen CJ, Fernandez ML (2013) Dietary strategies to reduce metabolic syndrome. Rev Endocr Metab Disord 14:241–254. doi:10.1007/s11154-013-9251-y

    Article  CAS  PubMed  Google Scholar 

  5. Melanson EL, Astrup A, Donahoo WT (2009) The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann Nutr Metab 55:229–243. doi:10.1159/000229004

    Article  CAS  PubMed  Google Scholar 

  6. Ma J, Folsom AR, Shahar E, Eckfeldt H (1995) Plasma fatty acid composition as an indicator dietary fat intake in middle-aged adults. Am J Clin Nutr 62:564–571

    CAS  PubMed  Google Scholar 

  7. Hodge AM, Simpson JA, Gibson RA et al (2007) Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort. Nutr Metab Cardiovasc Dis 17:415–426. doi:10.1016/j.numecd.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Mozaffarian D, Katan MB, Ascherio A et al (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    Article  CAS  PubMed  Google Scholar 

  9. Aronis KN, Khan SM, Mantzoros CS (2012) Effects of trans fatty acids on glucose homeostasis: a meta-analysis of randomized, placebo-controlled clinical trials. Am J Clin Nutr 96:1093–1099. doi:10.3945/ajcn.112.040576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brouwer IA, Wanders AJ, Katan MB (2010) Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans—a quantitative review. PLoS One 5:e9434. doi:10.1371/journal.pone.0009434

    Article  PubMed Central  PubMed  Google Scholar 

  11. Health Canada (2006) Task force on trans fat. In: Heal. Canada Ottawa. http://www.hc-sc.gc.ca/fn-an/nutrition/gras-trans-fats/tf-ge/index-eng.php. Accessed 20 May 2015

  12. Månsson HL (2008) Fatty acids in bovine milk fat. Food Nutr Res 52:1–3. doi:10.3402/fnr.v52i0.1821

    Article  Google Scholar 

  13. Bendsen NT, Christensen R, Bartels EM, Astrup A (2011) Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. Eur J Clin Nutr 65:773–783. doi:10.1038/ejcn.2011.34

    Article  CAS  PubMed  Google Scholar 

  14. Kratz M, Marcovina S, Nelson JE et al (2014) Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not beta-cell function in humans. Am J Clin Nutr 99:1385–1396. doi:10.3945/ajcn.113.075457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Mozaffarian D, Otto MCDO, Lemaitre RN et al (2013) Trans-palmitoleic acid, other dairy fat biomarkers, and incident diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 97:854–861. doi:10.3945/ajcn.112.045468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mozaffarian D, Cao H, King IB et al (2010) Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults. Ann Intern Med 153:790–799. doi:10.7326/0003-4819-153-12-201012210-00005

    Article  PubMed Central  PubMed  Google Scholar 

  17. Larose J, Julien P, Greffard K et al (2014) F2-isoprostanes are correlated with trans fatty acids in the plasma of pregnant women. Prostaglandins Leukot Essent Fatty Acids 91:243–249. doi:10.1016/j.plefa.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  18. Paradis A-M, Pérusse L, Godin G, Vohl M-C (2008) Validity of a self-reported measure of familial history of obesity. Nutr J 7:27. doi:10.1186/1475-2891-7-27

    Article  PubMed Central  PubMed  Google Scholar 

  19. Callaway C, Chumlea W, Bouchard C et al (1988) Standardization of anthropometric measurements. In: Lohman T, Roche A, Martorel R, Champaign I (eds) Airlie Consensus Conference. Human Kinetics Publishers, USA, pp 39–80

  20. McNamara JR, Schaefer EJ (1987) Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin Chim Acta 166:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Burstein M, Samaille J (1960) On a rapid determination of the cholesterol bound to the serum alpha- and beta-lipoproteins. Clin Chim Acta 5:609

    Article  CAS  PubMed  Google Scholar 

  22. Albers JJ, Warnick GR, Wiebe D et al (1978) Multi-laboratory comparison of three heparin-Mn2+ precipitation procedures for estimating cholesterol in high-density lipoprotein. Clin Chem 24:853–856

    CAS  PubMed  Google Scholar 

  23. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  24. Desbuquois B, Aurbach GD (1971) Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab 33:732–738. doi:10.1210/jcem-33-5-732

    Article  CAS  PubMed  Google Scholar 

  25. Richterich R, Dauwalder H (1971) Determination of plasma glucose by hexokinase-glucose-6-phosphate dehydrogenase method. Schweiz Med Wochenschr 101:615–618

    CAS  PubMed  Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. doi:10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  27. Pirro M, Bergeron J, Dagenais GR et al (2001) Age and duration of follow-up as modulators of the risk for ischemic heart disease associated with high plasma C-reactive protein levels in men. Arch Intern Med 161:2474–2480. doi:10.1001/archinte.161.20.2474

    Article  CAS  PubMed  Google Scholar 

  28. Counil E, Julien P, Lamarche B et al (2009) Association between trans-fatty acids in erythrocytes and pro-atherogenic lipid profiles among Canadian Inuit of Nunavik: possible influences of sex and age. Br J Nutr 102:766–776. doi:10.1017/S0007114509297182

    Article  CAS  PubMed  Google Scholar 

  29. Moreel X, Allaire J, Léger C et al (2014) Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance. Cancer Prev Res 7:766–776. doi:10.1158/1940-6207.CAPR-13-0349

    Article  CAS  Google Scholar 

  30. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  31. Hulley SB, Cummings SR, Browner WS et al (2001) Designing clinical research—an epidemiologic approach

  32. Hodge AM, English DR, Dea KO et al (2007) Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 86:189–197

    CAS  PubMed  Google Scholar 

  33. Rodríguez Y, Giri M, Rottiers R, Christophe AB (2004) Obese type 2 diabetics and obese patients have comparable plasma phospholipid fatty acid compositions deviating from that of healthy individuals. Prostaglandins Leukot Essent Fatty Acids 71:303–308. doi:10.1016/j.plefa.2004.04.004

    Article  PubMed  Google Scholar 

  34. Nestel PJ, Straznicky N, Mellett NA et al (2014) Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am J Clin Nutr 99:46–53. doi:10.3945/ajcn.113.071712

    Article  CAS  PubMed  Google Scholar 

  35. Santaren ID, Watkins SM, Liese AD et al (2014) Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. Am J Clin Nutr 100:1532–1540. doi:10.3945/ajcn.114.092544

    Article  CAS  PubMed  Google Scholar 

  36. Sofie Biong A, Berstad P, Pedersen JI (2006) Biomarkers for intake of dairy fat and dairy products. Eur J Lipid Sci Technol 108:827–834. doi:10.1002/ejlt.200600044

    Article  Google Scholar 

  37. Sun Q, Campos H, Hu FB (2007) Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease. Am J Clin Nutr 86:929–937

    CAS  PubMed  Google Scholar 

  38. Aslibekyan S, Campos H, Baylin A (2012) Biomarkers of dairy intake and the risk of heart disease. Nutr Metab Cardiovasc Dis 22:1039–1045. doi:10.1016/j.numecd.2011.02.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tong X, Dong J-Y, Wu Z-W et al (2011) Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur J Clin Nutr 65:1027–1031. doi:10.1038/ejcn.2011.62

    Article  CAS  PubMed  Google Scholar 

  40. Vartanian LR, Schwartz MB, Brownell KD (2007) Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health 97:667–675. doi:10.2105/AJPH.2005.083782

    Article  PubMed Central  PubMed  Google Scholar 

  41. Da Silva MS, Julien P, Couture P et al (2014) Associations between dairy intake and metabolic risk parameters in a healthy French-Canadian population. Appl Physiol Nutr Metab 39:1–9. doi:10.1139/apnm-2014-0154

    Article  Google Scholar 

  42. Turpeinen AM, Mutanen M, Aro A et al (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76:504–510

    CAS  PubMed  Google Scholar 

  43. Koba K, Yanagita T (2014) Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract 8:e525–e532. doi:10.1016/j.orcp.2013.10.001

    Article  PubMed  Google Scholar 

  44. Guerre-Millo M (2008) Adiponectin: an update. Diabetes Metab 34:12–18. doi:10.1016/j.diabet.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  45. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83. doi:10.1006/bbrc.1999.0255

    Article  CAS  PubMed  Google Scholar 

  46. Takkunen MJ, de Mello VDF, Schwab US et al (2014) Associations of erythrocyte membrane fatty acids with the concentrations of C-reactive protein, interleukin 1 receptor antagonist and adiponectin in 1373 men. Prostaglandins Leukot Essent Fatty Acids 91:169–174. doi:10.1016/j.plefa.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  47. Herrera-Meza MS, Mendoza-López MR, García-Barradas O et al (2013) Dietary anhydrous milk fat naturally enriched with conjugated linoleic acid and vaccenic acid modify cardiovascular risk biomarkers in spontaneously hypertensive rats. Int J Food Sci Nutr 64:575–586. doi:10.3109/09637486.2013.763908

    Article  CAS  PubMed  Google Scholar 

  48. Tardy A-L, Morio B, Chardigny J-M, Malpuech-Brugère C (2011) Ruminant and industrial sources of trans-fat and cardiovascular and diabetic diseases. Nutr Res Rev 24:111–117. doi:10.1017/S0954422411000011

    Article  CAS  PubMed  Google Scholar 

  49. Tardy A, Lambert-Porcheron S, Malpuech-brugère C et al (2009) Dairy and industrial sources of trans fat do not impair peripheral insulin sensitivity in overweight women. Am J Clin Nutr 90:88–94. doi:10.3945/ajcn.2009.27515

    Article  CAS  PubMed  Google Scholar 

  50. Granados N, Amengual J, Ribot J et al (2011) Distinct effects of oleic acid and its trans-isomer elaidic acid on the expression of myokines and adipokines in cell models. Br J Nutr 105:1226–1234. doi:10.1017/S0007114510004885

    Article  CAS  PubMed  Google Scholar 

  51. Park K-H, Kim J-M, Cho K-H (2014) Elaidic acid (EA) generates dysfunctional high-density lipoproteins and consumption of EA exacerbates hyperlipidemia and fatty liver change in zebrafish. Mol Nutr Food Res 58:1537–1545. doi:10.1002/mnfr.201300955

    Article  CAS  PubMed  Google Scholar 

  52. Liu X-R, Deng Z-Y, Hu J-N et al (2013) Erythrocyte membrane trans-fatty acid index is positively associated with a 10-year CHD risk probability. Br J Nutr 109:1695–1703. doi:10.1017/S0007114513000196

    Article  CAS  PubMed  Google Scholar 

  53. Jaudszus A, Kramer R, Pfeuffer M et al (2014) Trans palmitoleic acid arises endogenously from dietary vaccenic acid. Am J Clin Nutr 99:431–435. doi:10.3945/ajcn.113.076117

    Article  CAS  PubMed  Google Scholar 

  54. Katan MB, Deslypere JP, van Birgelen APJM et al (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38:2012–2022

    CAS  PubMed  Google Scholar 

  55. Mansour MP, Li D, Sinclair AJ (2001) The occurrence of trans-18: 1 isomers in plasma lipids classes in humans. Eur J Clin Nutr 55:59–64

    Article  CAS  PubMed  Google Scholar 

  56. Mossoba MM, Moss J, Kramer JKG (2009) Trans fat labeling and levels in U. S. foods: assessment of gas chromatographic and infrared spectroscopic techniques for regulatory compliance. J AOAC Int 92:1284–1301

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all subjects who participated in the study for their excellent collaboration. We would like to thank Marie-Eve Bouchard, Steve Amireault, Diane Drolet and Dominique Beaulieu for their involvement in the recruitment of the subjects, the study coordination and data collection. We would also like to thank Line Berthiaume who performed gas chromatographic analyses to determine fatty acid profiles in plasma phospholipids. This study was supported by a grant from Canadian Institutes of Health Research (CIHR)-New Emerging Teams Programs (NET) (#OHN 63276). This study was also supported by a grant no# MOP-200609 from CIHR. MSD received a scholarship from the Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine (CREMOGH). MCV holds a Tier 1 Canada Research Chair in Genomics Applied to Nutrition and Health. IR holds a Junior 1 Research Scholarship from the Fond de Recherche du Québec-Santé (FRQ-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Rudkowska.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, M.S., Julien, P., Pérusse, L. et al. Natural Rumen-Derived trans Fatty Acids Are Associated with Metabolic Markers of Cardiac Health. Lipids 50, 873–882 (2015). https://doi.org/10.1007/s11745-015-4055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4055-3

Keywords

Navigation