Skip to main content
Log in

Exogenous ascorbic acid mitigates accumulation of abscisic acid, proline and polyamine under osmotic stress in maize leaves

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of osmotic stress (polyethylene glycol, PEG 6000) and exogenous ascorbic acid (ASC) on abscisic acid (ABA), some osmolytes (proline and polyamine), and gene expression of polyamine metabolic enzymes arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC) and polyamine oxidase (PAO1) were assessed in the leaves of Zea mays L. seedlings. ASC (0.1 mM) was hydroponically applied to detached maize seedlings. ASC application scavenged endogenous hydrogen peroxide level and ameliorated leaf water status and stomatal conductance under osmotic stress. Lipid peroxidation, ABA and osmolyte accumulation were mitigated by ASC treatment. For osmolytes, the alleviation of polyamine accumulation was more obvious than that of the proline. Therefore, gene expressions of polyamine metabolic enzymes were investigated. Compared to control seedlings, down-regulation of SAMDC and ADC gene expressions were determined in ASC + PEG-applied seedlings while PAO1 gene expression increased. These results indicated that exogenous ASC influenced polyamine metabolism. ASC application under the osmotic stress ameliorated osmotic solute levels and ABA concentration in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

Abscisic acid-responsive element

ADC:

Arginine decarboxylase

ASC:

Ascorbic acid

DW:

Dry weight

g s :

Stomatal conductance

HPLC:

High performance liquid chromatography

MDA:

Malondialdehyde

PA:

Polyamine

PAO:

Polyamine oxidase

PEG:

Polyethylene glycol

Put:

Putrescine

ROS:

Reactive oxygen species

SAMDC:

S-Adenosylmethionine decarboxylase

Spd:

Spermidine

SPDS:

Spermidine synthase

Spm:

Spermine

SPMS:

Spermine synthase

References

  • Alcázar R, Cuevas JC, Patrón M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Banghizadeh A, Ghorbanli M, Hajmohammadrezaei M, Mozafari H (2009) Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in Okra (Hibiscus esculentus L.). Res J Biol Sci 4:380–387

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Bates S (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Ben-Gigirey B, De Sousa JMVB, Villa TG, Barros-Velazquez J (1998) Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. J Food Prot 61:608–615

    CAS  PubMed  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in Plants. Metabolites 2:516–528

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Dolatabadian A, Modarres Sanavy SAM, Sharifi M (2009) Alleviation of water deficit effects by foliar application of ascorbic acid on Zea mays L. J Agron Crop Sci 195:347–355

    Article  CAS  Google Scholar 

  • Ebrahimian E, Bybordi A (2012) Influence of ascorbic acid foliar application on chlorophyll, flavonoids, anthocyanin and soluble sugar contents of sunflower under conditions of water deficit stress. J Food Agric Environ 10:1026–1030

    CAS  Google Scholar 

  • Erdei L, Szegletes Z, Barabas K, Pestenacz A (1996) Responses in polyamine under osmotic and salt stress in sorghum and maize seedlings. J Plant Physiol 147:599–603

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable Agriculture. Springer, Netherlands, pp 153–188

    Chapter  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL, Smith M, Beckett RP (2002) Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytol 156:255–264

    Article  CAS  Google Scholar 

  • Hamdia MA, Shaddad MAK (2010) Salt tolerance of crop plants. J Stress Physiol Biochem 6:64–90

    Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exper Bot 50:413–434

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jagota SK, Dani HM (1982) A new calorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem 127:178–182

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Ahmad MSA, Athar HR, Ashraf M (2006) Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pak J Bot 38:1407–1414

    Google Scholar 

  • Khan TA, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28:97–111

    Article  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31:72–77

    CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Hussain K, Majeed A. Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480

  • Overmyer K, Brosche M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Pavet V, Ollimos E, Kiddle G, Kumar S, Antonaiw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance in Arabidopsis thaliana. Plant Physiol 139:1291–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and development stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang P, Song C (2008) Guard-cell signaling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  • Waseem M, Athar HR, Ashraf M (2006) Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak J Bot 38:1127–1136

    Google Scholar 

  • Xue B, Zhang A, Jiang M (2009) Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize. J Integr Plant Biol 51:225–234

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah S, Baghizadeh A, Abbassi F (2011) The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. Afr J Agric Res 6:798–807

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang M, Duan L, Tian X, He Z, Li J, Wang B, Li Z (2007) Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones an antioxidant system. J Plant Physiol 164:709–717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Turkish National Science Foundation (Project No: 111T511). We thank Assoc. Prof. Dr. Ahmet YAŞAR (Faculty of Pharmacy, Karadeniz Technical University) for their assistance with analysis of HPLC. We also wish to thank lecturer Ali Şükrü ÖZBAY (School of Foreign Languages, Karadeniz Technical University) for English language improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiye Terzi.

Additional information

Communicated by W. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzi, R., Kalaycıoglu, E., Demiralay, M. et al. Exogenous ascorbic acid mitigates accumulation of abscisic acid, proline and polyamine under osmotic stress in maize leaves. Acta Physiol Plant 37, 43 (2015). https://doi.org/10.1007/s11738-015-1792-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1792-0

Keywords

Navigation