Skip to main content
Log in

Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present study, Na+ manipulating genes could contribute not only to ion homeostasis but also to growth stimulation with exposing the halophyte Atriplex halimus L. to moderate NaCl concentration. The stimulation of growth was attributed to Na+ accumulation inside the vacuole leading to increase leaf cell size as well as accelerate leaf cell division. Increasing the assimilatory surface could result in enhancing the photosynthetic rate. The reduction of A. halimus growth compared to optimum growth at 50 and 200 mM NaCl could be attributed to osmotic effect rather than the ionic one of salt stress. The inhibition of photosynthesis seemed to be resulted from limitation of CO2 due to the osmotic effect on stomatal conductance rather than the activity loss of photosynthetic machinery. The depletion of starch content along with the increase in sucrose content could imply that photosynthesis may be a limiting for A. halimus growth. The fast coordinate induction of Na+ manipulating genes could reveal that the tolerance of A. halimus to high concentrations evolved from its ability to regulate and control Na+ influx and efflux. V-H +-PPase may play a vital role in A. halimus tolerance to osmotic and/or ionic stress due to its kinetics of induction. It seemed that H+-ATPase plays a pivotal role in A. halimus tolerance to stress due to the increase in its protein level was detected with all NaCl concentrations as well as with PEG treatments. Both of these genes might be useful in improving stress tolerance in transgenic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abogadallah GM (2010) Sensitivity of Trifolium alexandrinum L. to salt stress is related to the lack of long-term stress-induced gene expression. Plant Sci 178:491–500

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance. Cur Opin Biotechnol 13:146–150

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertion mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    Article  PubMed  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142

    Article  CAS  Google Scholar 

  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1456:140–151

    Google Scholar 

  • Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354

    PubMed  CAS  Google Scholar 

  • Brownell PF, Bielig LM (1996) The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in the mesophyll chloroplasts of C4 plants. Aust J Plant Physiol 23:171–177

    Article  CAS  Google Scholar 

  • De Herralde F, Biel C, Savé R, Morales MA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (1998) Effect of water and salt stress on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Sci 139:9–17

    Article  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD, Bangarusamy U (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363–373

    Article  CAS  Google Scholar 

  • FAO, FAO Land and Plant Nutrition Management Service (2007) http://www.fao.org/ag/agl/agll/spush

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Hansen EH, Munns DN (1988) Effect of CaSO4 and NaCl on mineral content of Leucaena leucocephala. Plant Soil 7:101–105

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hatch MD, Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking CR, Heber U (eds) Transport in plants. III. Intracellular interactions and transport processes. Encylopaedia in plant physiology, New Series, vol 3, pp 144–184

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication 22. GB: Commonwealth Bureau of horticulture plantation crops

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  • James RJ, Rivelli AR, Munns R, Caemmerer SV (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed drum wheat. Funct Plant Biol 29:1393–1403

    Article  CAS  Google Scholar 

  • Jefferies RL, Davy AJ, Rudmik T (1979) The growth strategies of coastal halophytes. In: Jefferies RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell Scientific Publications, Oxford, pp 243–268

    Google Scholar 

  • Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165:837–844

    Article  Google Scholar 

  • Kerstiens G, Tych W, Robinson MF, Mansfield TA (2002) Sodiumrelated partial stomatal closure and salt tolerance of Aster tripolium. New Phytol 153:509–515

    Article  CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Laemmlli EK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Le Houerou H (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Res Rehabil 14:101–135

    Google Scholar 

  • Lu KX, Cao BH, Feng XP, He Y, Jiang DA (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica 47:381–387

    Article  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Ann Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  Google Scholar 

  • Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Morris DA, Arthur ED (1984) Invertase activity in sinks undergoing cell expansion. Plant Growth Regul 2:327–337

    Article  CAS  Google Scholar 

  • Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, Guo J, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Aust J Plant Physiol 27:949–957

    Google Scholar 

  • Murata S, Kobayashi M, Matoh T, Sekiya J (1992) Sodium stimulates regeneration of phosphoenol pyruvate in mesophyll chloroplasts of chloroplasts of Amaranthus tricolor. Plant Cell Physiol 33:1247–1250

    CAS  Google Scholar 

  • Niu X, Narasimhan M, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Flugge U, Heldt HW, Kanai R (1990) Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants: Na+/pyruvate cotransport. Plant Physiol 94:950–959

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Pitman MG (1981) Ion uptake. In: Paleg LG, Aspinall DD (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, New York, pp 71–96

    Google Scholar 

  • Qiu N, Chen M, Guo J, Bao H, Ma X, Wang B (2007) Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Sci 172:1218–1225

    Article  CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Ann Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Redondo-Gomez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124

    Article  CAS  Google Scholar 

  • Redondo-Gomez S, Mateos-Naranjo E, Figueroal ME, Davy AJ (2008) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87

    Article  Google Scholar 

  • Robinson MF, Very AA, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393

    Article  CAS  Google Scholar 

  • Saliendra NZ, Meinzer FC, Perry M, Thom M (1996) Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. J Exp Bot 47:907–914

    Article  CAS  Google Scholar 

  • Sze H, Wald JM, Lai S, Perera I (1992) Vacuolar-type H+-translocating ATPases in plant endomembranes: subunit organization and multigene families. J Exp Biol 172:123–135

    PubMed  CAS  Google Scholar 

  • Wakeel A, Hanstein S, Pitann B, Schubert S (2010) Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress. J Plant Physiol 167:725–731

    Article  PubMed  CAS  Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritime (L.) Dum.: evaluation of the effect of salinity upon growth. J Exp Bot 31:1171–1183

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Cur Opin Plant Biol 6:441–445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Missions, Egypt for funding this work and the University of Sheffield, UK, for hosting the work. We also thank Dr Robert Malinowski for helping with the molecular analyses and Professor Maeshima, Nagoya University, Japan for kindly providing vacuolar H+-ATPase antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham M. Nada.

Additional information

Communicated by J. Zwiazek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khedr, A.H.A., Serag, M.S., Nemat-Alla, M.M. et al. Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L.. Acta Physiol Plant 33, 1769–1784 (2011). https://doi.org/10.1007/s11738-011-0714-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0714-z

Keywords

Navigation