Skip to main content

Advertisement

Log in

Acupuncture intervening depressive disorder: research progress in its neurobiological mechanism

针刺干预抑郁症的神经生物学机制研究进展

  • Review
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Depressive disorder seriously affects people’s physical and mental health. Acupuncture is a safe and effective treatment for depression, yet, its mechanism is unclear. Therefore, acupuncture’s action mechanism in intervening depression was summarized from several perspectives, including morphology and ultrastructure of neurons in depression-related brain areas, function and structure of glial cells, brain functional and structural connectivity, and neuroelectrophysiology. It’s discovered that acupuncture can repair the morphological and ultrastructural damage of neurons in the hippocampus and prefrontal lobe, mitigate the functional and structural injuries of glial cells in the hippocampus and prefrontal lobe, strengthen functional connectivity and heal structural connection, and promote neuroelectrophysiological activities, which possibly are the principal mechanisms of how acupuncture works in intervening depressive disorder.

摘要

抑郁症严重影响身心健康, 针刺治疗抑郁症安全有效, 但其作用机制尚未完全明确。因此, 从抑郁相关脑区神经元形态及超微结构、神经胶质细胞功能和结构、大脑功能和结构连接、神经电生理方面总结针刺干预抑郁症的作用机制, 发现针刺可修复海马和前额叶神经元形态及超微结构损害, 改善海马和前额叶神经胶质细胞功能和结构损伤, 增强功能连接和修复结构连接, 促进神经电生理活动; 这些可能是针刺干预抑郁症的主要作用机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MALHI G S, MANN J J. Depression. Lancet, 2018, 392(10161): 2299–2312.

    Article  PubMed  Google Scholar 

  2. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159): 1789–1858.

    Article  Google Scholar 

  3. ZHANG J Z, LIU Y, LI Z Y, BIAN Y F, ZHOU Q, SHAN C L, QI R. Research progress on the effect and mechanism of Tai Ji Quan in the treatment of post-stroke depression. J Acupunct Tuina Sci, 2022, 20(5): 412–418.

    Article  Google Scholar 

  4. HARMER C J, DUMAN R S, COWEN P J. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry, 2017, 4(5): 409–418.

    Article  PubMed  PubMed Central  Google Scholar 

  5. ZHOU J, DONG Y Q, WANG Y N, MA G Z, HE J, WANG W, HUANG Y W, ZHANG A J, ZENG F C, WANG R M, HU Z H, WANG Y. Efficacy observation of combining acupuncture and medication for mild-to-moderate depression. Shanghai Zhenjiu Zazhi, 2021, 40(11): 1312–1317.

    Google Scholar 

  6. AI C Q, WANG Q B, WANG X, WANG Y, CHEN S M, CHEN X. Therapeutic observation of cranial suture acupuncture in treating depression. J Acupunct Tuina Sci, 2018, 16(3): 161–166.

    Article  Google Scholar 

  7. PENG H Y, MA M Y, GONG X H, WANG M Y, LIU J, WANG J, ZHAO Z H. Meta-analysis of the clinical efficacy of combined acupuncture and medicine for senile depression. Shanghai Zhenjiu Zazhi, 2022, 41(3): 297–308.

    Google Scholar 

  8. ZHI Y, HUO X H, LI P. Efficacy observation of Zhi Shen Tiao Sui acupuncture method for depression after ischemic stroke. J Acupunct Tuina Sci, 2021, 19(3): 180–186.

    Article  Google Scholar 

  9. LI X H, QIN L N, XING L F, HUANG S H, FENG R R. Impact of electroacupuncture on the behaviors of WKY depression model rats and the expression of prefrontal cortex GLUR1 and NR2B proteins. Shanghai Zhenjiu Zazhi, 2022, 41(8): 818–823.

    Google Scholar 

  10. HUANG Q F. Exploration of the clinical regularity of acupuncture-moxibustion treatment for depression. J Acupunct Tuina Sci, 2009, 7(1): 57–60.

    Article  Google Scholar 

  11. YANG X Y, HE Y N, ZHAO T Y, SUN S Y, PAN X F, GUO Y. Study on compatibility law of acupoints in patients with depression treated by acupuncture based on data mining. Zhongguo Zhongyiyao Xinxi Zazhi, 2021, 28(4): 21–25.

    Google Scholar 

  12. ZHAO F Y, GUO S N, XU Y, XU H, WANG G H, SONG H L, YUE L P, CHEN F L, CHEN S H, FU Q Q. Investigation of acupuncture in improving sleep, cognitive and emotion based on attenuation of oxidative stress in prefrontal cortex in sleep-deprived rats. J Acupunct Tuina Sci, 2021, 19(3): 157–166.

    Article  Google Scholar 

  13. LI M X, NIU J Q, YAN P J, YAO L, HE W B, WANG M, LI H J, CAO L J, LI X X, SHI X, LIU X R, YANG K H. The effectiveness and safety of acupuncture for depression: an overview of meta-analyses. Complement Ther Med, 2020, 50: 102202.

    Article  PubMed  Google Scholar 

  14. FU W B. Integrating acupuncture and moxibustion is the key to conquering the difficulty in treating depressive disorder. Zhongguo Zhen Jiu, 2018, 38(7): 766.

    Google Scholar 

  15. HAMILTON J P, CHEN M C, GOTLIB I H. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis, 2013, 52: 4–11.

    Article  PubMed  Google Scholar 

  16. GENG H Y, WU F, KONG L T, TANG Y Q, ZHOU Q, CHANG M, ZHOU Y F, JIANG X W, LI S B, WANG F. Disrupted structural and functional connectivity in prefrontal-hippocampus circuitry in first-episode medication-naïve adolescent depression. PLoS One, 2016, 11(2): e0148345.

    Article  PubMed  PubMed Central  Google Scholar 

  17. XU W B, YAO X X, ZHAO F Y, ZHAO H S, CHENG Z Q, YANG W, CUI R J, XU S B, LI B J. Changes in hippocampal plasticity in depression and therapeutic approaches influencing these changes. Neural Plast, 2020, 2020: 8861903.

    Article  PubMed  PubMed Central  Google Scholar 

  18. BOLDRINI M, FULMORE C A, TARTT A N, SIMEON L R, PAVLOVA I, POPOSKA V, ROSOKLIJA G B, STANKOV A, ARANGO V, DWORK A J, HEN R, MANN J J. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 2018, 22(4): 589–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. ANACKER C, HEN R. Adult hippocampal neurogenesis and cognitive flexibility-linking memory and mood. Nat Rev Neurosci, 2017, 18(6): 335–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ALAM M J, KITAMURA T, SAITOH Y, OHKAWA N, KONDO T, INOKUCHI K. Adult neurogenesis conserves hippocampal memory capacity. J Neurosci, 2018, 38(31): 6854–6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. BERGER T, LEE H, YOUNG A H, AARSLAND D, THURET S. Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med, 2020, 26(9): 803–818.

    Article  PubMed  Google Scholar 

  22. FANG J, DEMIC S, CHENG S. The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory. PLoS One, 2018, 13(6): e0198406.

    Article  PubMed  PubMed Central  Google Scholar 

  23. BOLDRINI M, GALFALVY H, DWORK A J, ROSOKLIJA G B, TRENCEVSKA-IVANOVSKA I, PAVLOVSKI G, HEN R, ARANGO V, MANN J J. Resilience is associated with larger dentate gyrus, while suicide decedents with major depressive disorder have fewer granule neurons. Biol Psychiatry, 2019, 85(10): 850–862.

    Article  PubMed  PubMed Central  Google Scholar 

  24. NAM M H, AHN K S, CHOI S H. Acupuncture: a potent therapeutic tool for inducing adult neurogenesis. Neural Regen Res, 2015, 10(1): 33–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LUO D, FAN X N, ZHAO H Y, QI Z S, SHI X M. Study on the effect of acupuncturing Renzhong on proliferation of neural stem cells in central nervous system of MCAO rat. Tianjin Zhongyiyao, 2014, 31(9): 548–551.

    CAS  Google Scholar 

  26. SHIN H K, LEE S W, CHOI B T. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem Pharmacol, 2017, 141: 132–142.

    Article  CAS  PubMed  Google Scholar 

  27. HAN K M, KIM A, KANG W, KANG Y, KANG J, WON E, TAE W S, HAM B J. Hippocampal subfield volumes in major depressive disorder and bipolar disorder. Eur Psychiatry, 2019, 57: 70–77.

    Article  PubMed  Google Scholar 

  28. BLUDAU S, BZDOK D, GRUBER O, KOHN N, RIEDL V, SORG C, PALOMERO-GALLAGHER N, MÜLLER V I, HOFFSTAEDTER F, AMUNTS K, EICKHOFF S B. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry. Am J Psychiatry, 2016, 173(3): 291–298.

    Article  PubMed  Google Scholar 

  29. LENER M S, KUNDU P, WONG E, DEWILDE K E, TANG C Y, BALCHANDANI P, MURROUGH J W. Cortical abnormalities and association with symptom dimensions across the depressive spectrum. J Affect Disord, 2016, 190: 529–536.

    Article  PubMed  Google Scholar 

  30. SARABDJITSINGH R A, LOI M, JOËLS M, DIJKHUIZEN R M, VAN DER TOORN A. Early life stress-induced alterations in rat brain structures measured with high resolution MRI. PLoS One, 2017, 12(9): e0185061.

    Article  PubMed  PubMed Central  Google Scholar 

  31. QIAO H, LI M X, XU C, CHEN H B, AN S C, MA X M. Dendritic spines in depression: what we learned from animal models. Neural Plast, 2016, 2016: 8056370.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DURIC V, BANASR M, STOCKMEIER C A, SIMEN A A, NEWTON S S, OVERHOLSER J C, JURJUS G J, DIETER L, DUMAN R S. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol, 2013, 16(1): 69–82.

    Article  CAS  PubMed  Google Scholar 

  33. HOLMES S E, SCHEINOST D, FINNEMA S J, NAGANAWA M, DAVIS M T, DELLAGIOIA N, NABULSI N, MATUSKEY D, ANGARITA G A, PIETRZAK R H, DUMAN R S, SANACORA G, KRYSTAL J H, CARSON R E, ESTERLIS I. Lower synaptic density is associated with depression severity and network alterations. Nat Commun, 2019, 10(1): 1529.

    Article  PubMed  PubMed Central  Google Scholar 

  34. GRANT S G N. Synapse diversity and synaptome architecture in human genetic disorders. Hum Mol Genet, 2019, 28(R2): R219–R225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. WANG Y L, DU R C, GAO Y T, LI X, LI C G, YUAN Y T, WANG F, TIAN F, LI P F, WANG C F. Relationship between hippocampal structure and high incidence of depression after spinal cord injury in mice. Zhongguo Bingli Shengli Zazhi, 2020, 36(3): 461–467.

    Google Scholar 

  36. TIAN Z Y, TU Y, JIANG H L, ZHANG X H, LU J, YU Q Y, LIANG X C, SHAO S J, XIANG D L, WU J H. Effects of electroacupuncture on the expression of caspase-12 in hippocampus and serum of rats with chronic unpredictable mild stress. Beijing Zhongyiyao Daxue Xuebao, 2018, 41(2): 154–159.

    Google Scholar 

  37. SHEN F E, WANG X J, HE T Z, JIANG J F. Effects of electroacupuncture on synaptic plasticity in hippocampal CA1 area of rats with chronic stress depression mediated by nNOS. Zhongguo Zhongyi Jichu Yixue Zazhi, 2018, 24(11): 1592–1596.

    Google Scholar 

  38. SHE Y L, JIANG T, CHEN R, LI Y, LI C, XU S F. Effects of electroacupuncture at GV20 and EX-HN3 on depressive like behaviors and ultrastructure of hippocampus in a depression rat model. Zhongguo Zhongyi Jichu Yixue Zazhi, 2017, 23(6): 837–839.

    Google Scholar 

  39. YE B H, LIU H F, LI L Z, PAN S L, SONG F J, WANG Q L, ZHU W Z. The effect of electroacupuncture on synaptic plasticity protein in hippocampus of chronic stress depression model rats. Wenzhou Yike Daxue Xuebao, 2019, 49(9): 673–676.

    Google Scholar 

  40. HAN X K, YIN P, YIN X, WU S W, XU S F. Effect of electroacupuncture on synaptic plasticity and 5-HTT protein in hippocampal CA1 region of WKY depression model rats. Shijie Kexue Jishu: Zhongyiyao Xiandaihua, 2018, 20(12): 2248–2254.

    Google Scholar 

  41. GAO J, LAI M Y, MAI T T, FU W, WANG M Y, NING B L, FU W B. Effects of electroacupuncture on BNDF/mTORC1 signaling pathway and synaptic plasticity in prefrontal cortex of rats exposed to chronic unpredictable mild stress. Zhen Ci Yan Jiu, 2022, 47(1): 15–20, 32.

    PubMed  Google Scholar 

  42. LIU Q Q, LI R, YANG W, CUI R J, LI B J. Role of neuroglia in neuropathic pain and depression. Pharmacol Res, 2021, 174: 105957.

    Article  CAS  PubMed  Google Scholar 

  43. CHEN F, BERTELSEN A B, HOLM I E, NYENGAARD J R, ROSENBERG R, DORPH-PETERSEN K A. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res, 2020, 1727: 146546.

    Article  CAS  PubMed  Google Scholar 

  44. COBB J A, O’NEILL K, MILNER J, MAHAJAN G J, LAWRENCE T J, MAY W L, MIGUEL-HIDALGO J, RAJKOWSKA G, STOCKMEIER C A. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience, 2016, 316: 209–220.

    Article  CAS  PubMed  Google Scholar 

  45. DU PREEZ A, ONORATO D, EIBEN I, MUSAELYAN K, EGELAND M, ZUNSZAIN P A, FERNANDES C, THURET S, PARIANTE C M. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun, 2021, 91: 24–47.

    Article  CAS  PubMed  Google Scholar 

  46. DONG S, JIANG H L, WANG Y, LU J, CHANG L, ZHANG P, XIN S C, TU Y. Effect of acupuncture on expression of glial fibrillary acidic protein in hippocampus and pre-frontal cortex and serum interleukin-10 in chronic restraint stress depression rats. Zhen Ci Yan Jiu, 2018, 43(4): 209–214.

    PubMed  Google Scholar 

  47. JIANG S, HUANG B, FAN L, LI F M, XIAO Y, FU W B. Influence of electro-acupuncture at Si-guan on the morphology of hippocampal astrocytes in depressive rats. Zhonghua Zhongyiyao Zazhi, 2015, 30(1): 216–218.

    Google Scholar 

  48. CHIN FATT C R, JHA M K, COOPER C M, FONZO G, SOUTH C, GRANNEMANN B, CARMODY T, GREER T L, KURIAN B, FAVA M, MCGRATH P J, ADAMS P, MCINNIS M, PARSEY R V, WEISSMAN M, PHILLIPS M L, ETKIN A, TRIVEDI M H. Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression. Am J Psychiatry, 2020, 177(2): 143–154.

    Article  PubMed  Google Scholar 

  49. GUDAYOL-FERRÉ E, PERÓ-CEBOLLERO M, GONZÁLEZ-GARRIDO A A, GUÀRDIA-OLMOS J. Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Front Hum Neurosci, 2015, 9: 582.

    Article  PubMed  PubMed Central  Google Scholar 

  50. KAISER R H, ANDREWS-HANNA J R, WAGER T D, PIZZAGALLI D A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 2015, 72(6): 603–611.

    Article  PubMed  PubMed Central  Google Scholar 

  51. LIU J, FAN Y M, ZENG L L, LIU B S, JU Y M, WANG M, DONG Q L, LU X W, SUN J R, ZHANG L, GUO H, ZHAO F T, LI W H, ZHANG L, LI Z X, LIAO M, ZHANG Y, HU D W, LI L J. The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis. Transl Psychiatry, 2021, 11(1): 102.

    Article  PubMed  PubMed Central  Google Scholar 

  52. FANG J L, RONG P J, HONG Y, FAN Y Y, LIU J, WANG H H, ZHANG G L, CHEN X Y, SHI S, WANG L P, LIU R P, HWANG J W, LI Z J, TAO J, WANG Y, ZHU B, KONG J. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry, 2016, 79(4): 266–273.

    Article  PubMed  Google Scholar 

  53. ZHOU H X, CHEN X, SHEN Y Q, LI L, CHEN N X, ZHU Z C, CASTELLANOS F X, YAN C G. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. Neuroimage, 2020, 206: 116287.

    Article  PubMed  Google Scholar 

  54. LI X J, XU K, FANG J L, HONG Y, CHEN L M, GAO D Q, ZHANG L, XU F Q, WANG H X. The preliminary study of clinical efficacy and brain mechanism of auricular electro-acupuncture on treatment-resistant depression monitored by resting state fMRI. Cigongzhen Chengxiang, 2020, 11(2): 84–88.

    CAS  Google Scholar 

  55. WANG Z J, WANG X Y, LIU J, CHEN J, LIU X, NIE G N, JORGENSON K, SOHN K C, HUANG R W, LIU M, LIU B, KONG J. Acupuncture treatment modulates the corticostriatal reward circuitry in major depressive disorder. J Psychiatr Res, 2017, 84: 18–26.

    Article  PubMed  Google Scholar 

  56. GONG Q, HE Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry, 2015, 77(3): 223–235.

    Article  PubMed  Google Scholar 

  57. KORGAONKAR M S, FORNITO A, WILLIAMS L M, GRIEVE S M. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry, 2014, 76(7): 567–574.

    Article  PubMed  Google Scholar 

  58. AJILORE O, LAMAR M, LEOW A, ZHANG A, YANG S, KUMAR A. Graph theory analysis of cortical-subcortical networks in late-life depression. Am J Geriatr Psychiatry, 2014, 22(2): 195–206.

    Article  PubMed  Google Scholar 

  59. GRAY J P, MÜLLER V I, EICKHOFF S B, FOX P T. Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am J Psychiatry, 2020, 177(5): 422–434.

    Article  PubMed  PubMed Central  Google Scholar 

  60. KOSHIYAMA D, FUKUNAGA M, OKADA N, MORITA K, NEMOTO K, USUI K, YAMAMORI H, YASUDA Y, FUJIMOTO M, KUDO N, AZECHI H, WATANABE Y, HASHIMOTO N, NARITA H, KUSUMI I, OHI K, SHIMADA T, KATAOKA Y, YAMAMOTO M, OZAKI N, OKADA G, OKAMOTO Y, HARADA K, MATSUO K, YAMASUE H, ABE O, HASHIMOTO R, TAKAHASHI T, HORI T, NAKATAKI M, ONITSUKA T, HOLLERAN L, JAHANSHAD N, VAN ERP T G M, TURNER J, DONOHOE G, THOMPSON P M, KASAI K, HASHIMOTO R. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2 937 individuals. Mol Psychiatry, 2020, 25(4): 883–895.

    Article  PubMed  Google Scholar 

  61. VULSER H, PAILLÈRE MARTINOT M L, ARTIGES E, MIRANDA R, PENTTILÄ J, GRIMMER Y, VAN NOORT B M, STRINGARIS A, STRUVE M, FADAI T, KAPPEL V, GOODMAN R, TZAVARA E, MASSAAD C, BANASCHEWSKI T, BARKER G J, BOKDE A L W, BROMBERG U, BRÜHL R, BÜCHEL C, CATTRELL A, CONROD P, DESRIVIÈRES S, FLOR H, FROUIN V, GALLINAT J, GARAVAN H, GOWLAND P, HEINZ A, NEES F, PAPADOPOULOS-ORFANOS D, PAUS T, POUSTKA L, RODEHACKE S, SMOLKA M N, WALTER H, WHELAN R, SCHUMANN G, MARTINOT J L, LEMAITRE H. Early variations in white matter microstructure and depression outcome in adolescents with subthreshold depression. Am J Psychiatry, 2018, 175(12): 1255–1264.

    Article  PubMed  Google Scholar 

  62. WANG P R, YANG C Y, LIAN Z, ZHOU Y C, CHEN X P, YU L H. Therapeutic effect of the combined treatment with acupuncture and venlafaxine hydrochloride on depression based on diffusion tensor imaging technology. Zhongguo Zhen Jiu, 2019, 39(6): 571–575.

    PubMed  Google Scholar 

  63. ZHANG J, LIU D, ZHONG D, LI Y, JIN R, ZHENG Z, LI J. Specificity study of visualization analysis of electroencephalogram diagnosis of depression based on CiteSpace. Shengwu Yixue Gongchengxue Zazhi, 2021, 38(5): 919–931.

    PubMed  Google Scholar 

  64. ZHANG J, YAO F, YANG H Y, LI Z Y, XIAO B, LI W J. Progress on electroencephalogram application in acupuncture research. Shanghai Zhongyiyao Daxue Xuebao, 2019, 33(5): 83–87.

    Google Scholar 

  65. DE AGUIAR NETO F S, ROSA J L G. Depression biomarkers using non-invasive EEG: a review. Neurosci Biobehav Rev, 2019, 105: 83–93.

    Article  PubMed  Google Scholar 

  66. DOLSEN M R, CHENG P, ARNEDT J T, SWANSON L, CASEMENT M D, KIM H S, GOLDSCHMIED J R, HOFFMANN R F, ARMITAGE R, DELDIN P J. Neurophysiological correlates of suicidal ideation in major depressive disorder: hyperarousal during sleep. J Affect Disord, 2017, 212: 160–166.

    Article  PubMed  PubMed Central  Google Scholar 

  67. LEE P F, KAN D P X, CROARKIN P, PHANG C K, DORUK D. Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study. J Clin Neurosci, 2018, 47: 315–322.

    Article  PubMed  Google Scholar 

  68. NELSON B D, KESSEL E M, KLEIN D N, SHANKMAN S A. Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology, 2018, 55(1): https://doi.org/10.1111/psyp.12892.

  69. NUSSLOCK R, WALDEN K, HARMON-JONES E. Asymmetrical frontal cortical activity associated with differential risk for mood and anxiety disorder symptoms: an RDoC perspective. Int J Psychophysiol, 2015, 98(2 Pt 2): 249–261.

    Article  PubMed  Google Scholar 

  70. NUSSLOCK R, SHACKMAN A J, MCMENAMIN B W, GREISCHAR L L, DAVIDSON R J, KOVACS M. Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry. Psychophysiology, 2018, 55(1): https://doi.org/10.1111/psyp.12953.

  71. SPIRONELLI C, MAFFEI A, ROMEO Z, PIAZZON G, PADOVAN G, MAGNOLFI G, PASINI I, GOMEZ HOMEN F, CONCARI G, ANGRILLI A. Evidence of language-related left hypofrontality in major depression: an EEG beta band study. Sci Rep, 2020, 10(1): 8166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. CAULFIELD K A. Is accelerated, high-dose theta burst stimulation a panacea for treatment-resistant depression?. J Neurophysiol, 2020, 123(1): 1–3.

    Article  CAS  PubMed  Google Scholar 

  73. FITZGERALD P J, WATSON B O. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry, 2018, 8(1): 177.

    Article  PubMed  PubMed Central  Google Scholar 

  74. BURKHOUSE K L, OWENS M, FEURER C, SOSOO E, KUDINOVA A, GIBB B E. Increased neural and pupillary reactivity to emotional faces in adolescents with current and remitted major depressive disorder. Soc Cogn Affect Neurosci, 2017, 12(5): 783–792.

    Article  PubMed  PubMed Central  Google Scholar 

  75. HUANG X X, YU H B, YANG Z X, CAO X M. Clinical effect and mechanism study of Tiaoren Tongdu acupuncture in treating depression. Zhenjiu Linchuang Zazhi, 2021, 37(6): 12–16.

    Google Scholar 

  76. LIU M, ZHOU L, WANG X, JIANG Y, LIU Q. Deficient manipulation of working memory in remitted depressed individuals: behavioral and electrophysiological evidence. Clin Neurophysiol, 2017, 128(7): 1206–1213.

    Article  PubMed  Google Scholar 

  77. KLUMPP H, SHANKMAN S A. Using event-related potentials and startle to evaluate time course in anxiety and depression. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(1): 10–18.

    PubMed  Google Scholar 

  78. RUOHONEN E M, ALHAINEN V, ASTIKAINEN P. Event-related potentials to task-irrelevant sad faces as a state marker of depression. Biol Psychol, 2020, 149: 107806.

    Article  PubMed  Google Scholar 

  79. RUPPRECHTER S, STANKEVICIUS A, HUYS Q J M, SERIES P, STEELE J D. Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder. Psychol Med, 2021, 51(5): 795–803.

    Article  CAS  PubMed  Google Scholar 

  80. WANG R F, YU S Y. An event-related potential study of migraine. Zhongguo Tengtong Yixue Zazhi, 2014, 20(1): 42–45.

    CAS  Google Scholar 

  81. ZHOU L N, WANG G H, NAN C, WANG H L, LIU Z C, BAI H P. Abnormalities in P300 components in depression: an ERP-sLORETA study. Nord J Psychiatry, 2019, 73(1): 1–8.

    Article  PubMed  Google Scholar 

  82. HAN P, WANG Z Y, HUANG Y S, LUO Q L. Clinical observation of post-stroke depression by acupuncture and study P300 with events related potential. Linchuang Yiyao Wenxian Dianzi Zazhi, 2016, 3(44): 8753–8755.

    Google Scholar 

  83. WANG J J, WANG X Y, ZHANG X N, WANG G J, PU R, CHEN L Z, CHEN Z J, ZHOU J C, ZHAN G Y, WANG W Y. Effect of acupuncture on the cognitive function of migraine patients with depression/anxiety disorder. Zhongguo Zhen Jiu, 2021, 41(6): 615–620.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research and Innovation Funds Project of Gansu University of Traditional Chinese Medicine (甘肃中医药大学科学研究与创新基金 项目, No. 2021KCYB-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingke Yan  (严兴科) or Chongbing Ma  (马重兵).

Additional information

Conflict of Interest

The authors declare that there is no potential conflict of interest in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xiao, M., Ma, X. et al. Acupuncture intervening depressive disorder: research progress in its neurobiological mechanism. J. Acupunct. Tuina. Sci. 21, 239–246 (2023). https://doi.org/10.1007/s11726-023-1381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-023-1381-5

Keywords

关键词

中图分类号

文献标志码

Navigation