Skip to main content
Log in

Research advances in neurobiological mechanism of acupuncture for amblyopia

针刺干预弱视的神经生物学机制研究进展

  • Literature Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Amblyopia greatly affects the physical and mental development of children. Acupuncture is effective for amblyopia, though its mechanism remains unclear. This article summarized the mechanism of acupuncture treatment of amblyopia from the perspectives of morphology of neurons in visual cortex, visual electrophysiology, and molecular biology, etc. It was found that acupuncture may treat amblyopia through repairing the morphological and ultrastructural damages of neurons in visual cortex, promoting the electrical activities in visual pathway and visual cortical neurons, and modulating the synthesis and expression levels of factors involved in visual system. Nevertheless, further studies are required to unveil the mechanism of acupuncture treatment of amblyopia.

摘要

弱视严重影响患儿生理及心理发育。 针刺疗法是治疗弱视的有效方法之一, 但对其机制尚未完全明确。 从视皮层神经元形态学、 视觉电生理、 分子生物学等方面总结针刺干预弱视的机制, 发现针刺通过修复视皮层神经元形态及超微结构损害, 促进视觉通路及视皮层神经元电活动, 调控视觉系统相关分子合成和表达水平达到 干预弱视的目的。 对于针刺干预弱视机制仍需进一步研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Group of Strabismus and Pediatric Ophthalmology, Chinese Ophthalmological Society of Chinese Medical Association. Expert consensus on the diagnosis of amblyopia (2011). Zhonghua Yanke Zazhi, 2011, 47(8): 768.

    Google Scholar 

  2. He MG. The quality of epidemiological research on pediatric refractive error and amblyopia in China needs to be improved. Zhonghua Yanke Zazhi, 2017, 53(1): 3–6.

    CAS  Google Scholar 

  3. Jin WP, Lin MG, Li HZ. Therapeutic observation of centralized integrated method for amblyopia in kids. Zhejiang Yufang Yixue, 2012, 24(10): 55–56.

    Google Scholar 

  4. Wu JZ, Wang LP. Amblyopia affects kids’ learning ability. Jiankang Bolan, 2010, 10(10): 24–25.

    Google Scholar 

  5. Zhao JH, Chen LJ, Yao SF, Lin SC. A Group of Five Acupoints for Acupuncture-moxibustion Treatment of Amblyopia. Guangzhou: The 2nd Annual Ophthalmological Conference of World Federation of Traditional Chinese Medicine and the 10th Ophthalmological Conference of Integrated Traditional Chinese and Western Medicine of the Chinese Association of Chinese Medicine, 2011: 297–301.

    Google Scholar 

  6. Yan XK, Zhu TT, Ma CB, Liu AG, Dong LL, Wang JY. A Meta-analysis of randomized controlled trials on acupuncture for amblyopia. Evid Based Complement Alternat Med, 2013, 2013: 648054.

    PubMed  PubMed Central  Google Scholar 

  7. Sun XN, Tao J, Hao XH, Xu L, Li RX, Zhang JS. Study on visual electrophysiological function and ultrastructure in the visual cortex of sensitive period monocular deprivation rats. Guoji Yanke Zazhi, 2012, 12(11): 2075–2077.

    Google Scholar 

  8. Shi XF. Study on Ocular Dominance of Neurons and Synaptic Ultrastructure in Area 21a of Strabismic Amblyopic Cats. Tianjin: Master Thesis of Tianjin Medical University, 2005.

    Google Scholar 

  9. Zeng YW. Expressions of Caspase-3 in Visual Cortex and Lateral Geniculate Nucleus of Form Deprivation Amblyopia Rats. Hengyang: Master Thesis of University of South China, 2013.

    Google Scholar 

  10. Lin JJ. The Characteristics of Synaptophysin in Regulating Synaptic Plasticity in the Visual Cortex Before and After the Treatment of Monocular Deprivation Amblyopia. Xinxiang: Master Thesis of Xinxiang Medical College, 2015.

    Google Scholar 

  11. Wang ZQ. Expression of mGluR1 at Primary Visual Cortex of Monocular Deprived Amblyopia Rats and the Observation of Neuronic Ultrastructure. Xinxiang: Master Thesis of Xinxiang Medical College, 2007.

    Google Scholar 

  12. Liu J. Study on the Developmental Plasticity of Neurons in the Visual Cortex of Form Deprivation Amblyopia Rats. Guangzhou: Master Thesis of Jinan University, 2006.

    Google Scholar 

  13. Wen Y. The Changes of Ultrastructure and NGF Expression in Visual Cortex Area 17 of Optical Strabismus Cats. Jinan: Master Thesis of University of Jinan, 2012.

    Google Scholar 

  14. Qi XL. Experimental Study of Synaptic Plasticity in Region 17 of Visual Cortex of Monocular Form Deprived Rats. Qingdao: Master Thesis of Qingdao University, 2008.

    Google Scholar 

  15. Luo YL, Wu XY, Liu SZ, Tao LJ. Reactivation of visual cortical plasticity by NEP1-40 from monocular deprivation in adult rats. Guoji Yanke Zazhi, 2013, 13(2): 246–251.

    Google Scholar 

  16. Liu Y. The Differences of Fos Protein and C-fos Gene Expression in Lateral Geniculate Nucleus after Monocular Deprivation. Qingdao: Master Thesis of Qingdao University, 2004.

    Google Scholar 

  17. Dai CH. The Investigation on Synaptic Plasticity at the 17th Area of Adult Rat’s Visual Cortex. Qingdao: Master Thesis of Qingdao University, 2010.

    Google Scholar 

  18. Shao LG, Zhang YH, Zhang DG. Ultrastructural studies of neurons and synapses in the visual system of amblyopic cats. Zhonghua Yanke Zazhi, 1994, (1): 53–56.

    Google Scholar 

  19. Zhu TT, Xing JM, Yan XK. Study on the mechanism of acupuncture on regulation of synaptic structural plasticity in visual cortex of rats with monocular deprivation. Zhonghua Zhongyiyao Zazhi, 2017, 32(5): 2319–2322.

    Google Scholar 

  20. Ma CB, Zhu TT, Yan XK, Xing JM, Sheng XY, Zhang YD. Research of electrophysiological mechanisms on acupuncture treatment for amblyopia. Zhongguo Zhongyi Yanke Zazhi, 2014, 24(5): 385–387.

    Google Scholar 

  21. Xue CP, Zuo TJ, Lin GX, Yuan XR. Preliminary study of graphic visual evoked potential in amblyopic patients. Nanjing Yike Daxue Xuebao (Ziran Kexue Ban), 2011, 31(8): 1243–1245.

    Google Scholar 

  22. Levi DM, Manny RE. The pathophysiology of amblyopia: electrophysiological studies. Ann N Y Acad Sci, 1982, 388: 243–263.

    Article  CAS  PubMed  Google Scholar 

  23. Kubová Z, Kuba M, Juran J, Blakemore C. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res, 1996, 36(1): 181–190.

    Article  PubMed  Google Scholar 

  24. Yan XK, Dong LL, Liu AG, Wang JY, Ma CB, Zhu TT. Effect of acupuncture on pattern-visual evoked potential in rats with monocular visual deprivation. Zhongguo Zhen Jiu, 2013, 33(8): 721–724.

    PubMed  Google Scholar 

  25. Wei W, Qi HH, Wei CH, Zhao YJ. Effect of puncturing specific points on visual evoked potential of rats. Jiangsu Zhongyiyao, 2005, 26(11): 41–43.

    Google Scholar 

  26. Jiang YC. Research on the Effection Between Acupuncture Based on Kai Dao and LP2, AP2 of the Deprivation Amblyopia Rat Flash Visual Evoked Potential. Changchun: Master Thesis of Changchun University of Chinese Medicine, 2015.

    Google Scholar 

  27. Zhang D, Wu XY. The application of visual evoked potential in amblyopia. Guoji Yanke Zazhi, 2005, 5(2): 318–322.

    Google Scholar 

  28. Bai YF. Impact Study of Visual M, P Channel with Acupuncture Point Binao (LI 14). Nanjing: Master Thesis of Nanjing University of Chinese Medicine, 2011.

    Google Scholar 

  29. Zhu TT, Ma CB, Yan XK. Study on intervention mechanism of acupuncture for neuron abnormal neural coding in visual cortex area 17 of monocular deprivation rats. J Acupunct Tuina Sci, 2017, 15(4): 257–262.

    Article  Google Scholar 

  30. Zhu TT, Ma CB, Yan XK. Intervention of acupuncture on abnormal spatiotemporal pattern of visual cortex area 17 neuron in monocular deprivation amblyopia rats. Zhongguo Zhen Jiu, 2017, 37(1): 61–65.

    PubMed  Google Scholar 

  31. Liu J, Chen J, Zhou Q, Huang J, Wang YP. Study on the expression of c-fos protein in the visual cortex of adult rats with monocular strabismus amblyopia. Jinan Daxue Xuebao (Ziran Kexue Yu Yixue Ban), 2010, 31(2): 163–167.

    Google Scholar 

  32. Qiao SH, Liu Y, Chi HF. The expression of fos protein and c-fos gene in lateral geniculate nucleus of cat after monocular deprivation. Shenjing Jiepouxue Zazhi, 2006, 22(2): 192–198.

    Google Scholar 

  33. Li ZY, Qian YY, Zhang ZP, Kang Y, Yin HL. Investigation of cyclic amp response element binding protein (creb) expression in the visual cortex of monocularly deprived rats. Shenjing Jiepouxue Zazhi, 2004, 20(3): 245–250.

    Google Scholar 

  34. Lin FS, Zhuang JF, Zhu YH, Liu LY, Lin SB. Expression and significance of GAP-43 in lateral geniculate nucleus and visual cortex of monocularly deprived rats. Zhongguo Xieshi Yu Xiaoer Yanke Zazhi, 2005, 13(4): 156–159, 155.

    Google Scholar 

  35. Li ZY, Qian YY, Zhang ZP, Zhang MY, Yin HL. Primary report for investigation of changes in the expressions for PKCα and PKCβ isozymes in visual cortex of deprived rat. Jiepouxue Yanjiu, 2002, 24(2): 141–144.

    CAS  Google Scholar 

  36. Li J, Liu XL, Mao Y, Zhang JJ, Liu ST, Wang YY, Lin JJ. The expression of PSD-95 in the lateral geniculate nucleus of monocular form deprivation amblyopia rats before and after reverse suture treatment in the critical period. Zhongguo Xieshi Yu Xiaoer Yanke Zazhi, 2013, 21(3): 5–10.

    Google Scholar 

  37. Pan Q, Wang WQ, Song SG, Li SY. Effect of heat-sensitive moxibustion on children’s amblyopia and the regulation of CERB and c-fos. Linchuang He Shiyan Yixue Zazhi, 2016, 15(15): 1505–1508.

    Google Scholar 

  38. Huang PL, Lo EH. Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog Brain Res, 1998, 118: 13–25.

    Article  CAS  PubMed  Google Scholar 

  39. Hu YH. Study on the Mechanism of Acupuncture at Cuanzhu through Jingming for the Treatment of Amblyopia Based on the Expression of nNOS. Changchun: Doctor Thesis of Changchun University of Chinese Medicine, 2014.

    Google Scholar 

  40. Dong Y. The Impact of Acupuncture for Positive Expression of nNOS in Retina of the Monocular Deprivation Amblyopia Rat. Changchun: Master Thesis of Changchun University of Chinese Medicine, 2014.

    Google Scholar 

  41. Yamada Y, Hada Y, Imamura K, Mataga N, Watanabe Y, Yamamoto M. Differential expression of immediate-early genes, c-fos and zif268, in the visual cortex of young rats: effects of a noradrenergic neurotoxin on their expression. Neuroscience, 1999, 92(2): 473–484.

    Article  CAS  PubMed  Google Scholar 

  42. Mower GD, Kaplan IV. Immediate early gene expression in the visual cortex of normal and dark reared cats: differences between fos and egr-1. Brain Res Mol Brain Res, 2002, 105(1–2): 157–160.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Q, Chen J, Liu J, Xu JT, Wang YP, Zhao SB. Study on the expression of c-fos in the visual cortex of amblyopia rats after the critical period of vision plasticity. Guangdong Yixue, 2007, 28(10): 1594–1596.

    Google Scholar 

  44. Qiu YM. Tonic on the Visual Cortex of Form Deprived Amblyopia Rats Study on C-fos Protein Expression in Neurons. Changchun: Master Thesis of Changchun University of Chinese Medicine, 2015.

    Google Scholar 

  45. Hua ZJ. Expression of GAP-43 in Region 17 of Visual Cortex in Form Deprived Amblyopic Kittens. Kunming: Master Thesis of Kunming Medical College, 2010.

    Google Scholar 

  46. Shao LG, Guo JQ. Gene expression of NT-3 in the neurons of visual system on MS and MD kittens in different visual development periods. Zhongguo Xieshi Yu Xiaoer Yanke Zazhi, 1999, (4): 21–25, 27–29.

    Google Scholar 

  47. Domenici L, Berardi N, Carmignoto G, Vantini G, Maffei L. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci USA, 1991, 88(19): 8811–8815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carmignoto G, Canella R, Candeo P, Comelli MC, Maffei L. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol, 1993, 464: 343–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, Castrén E, Maffei L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science, 2008, 320(5874): 385–388.

    Article  CAS  PubMed  Google Scholar 

  50. Li X, He XZ. Expression of brain-derived neurotrophic factor in visual cortex of monocular form deprivation amblyopia rats. Guoji Yanke Zazhi, 2011, 11(1): 49–50.

    Google Scholar 

  51. Li LL. Effect of Brain Derived Neurotropic Factors and Neurite Outgrowth Inhibitor A in Cat’s Binocular Vision. Qingdao: Master Thesis of Qingdao University, 2013.

    Google Scholar 

  52. Wang HF, Wang FC, Shi Y. Study on the correlation between the deprivation effect of resisting amblyopia of acupuncture and brain derived neurotrophic factor. Zhen Ci Yan Jiu, 2005, 30(4): 208–211.

    CAS  Google Scholar 

  53. Wang FC, Shi Y. Effect of acupuncture on brain-derived neurotrophic factors in visual system of deprived amblyopic cats. Changchun Zhongyi Xueyuan Xuebao, 2003, 19(3): 72–74.

    CAS  Google Scholar 

  54. Zhu TT, Chen C, Yan XK. Regulation of acupuncture on NMDAR1 mRNA expression in visual cortex of monocularly-deprived rats. J Acupunct Tuina Sci, 2017, 15(1): 1–7.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (国家自然科学基金, No. 81860879, No. 81660816, No. 81260560); Innovation Fund for the Mid-aged and the Young of Gansu University of Chinese Medicine ( 甘肃中医药大学中青年创新基金, No. ZQ2015-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-ke Yan  (严兴科).

Additional information

Conflict of Interest

The authors declared that there was no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Cb., Zhu, Tt., Liu, Ag. et al. Research advances in neurobiological mechanism of acupuncture for amblyopia. J. Acupunct. Tuina. Sci. 17, 278–283 (2019). https://doi.org/10.1007/s11726-019-1118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-019-1118-7

Keywords

关键词

中图分类号

文献标志码

Navigation