Skip to main content
Log in

Study on intervention mechanism of acupuncture for neuron abnormal neural coding in visual cortex area 17 of monocular deprivation rats

针刺对单眼剥夺大鼠视皮层17 区神经元异常神经编码的干预机制研究

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To investigate the electrophysiological mechanism of acupuncture for the visual cortex plasticity during the sensitive period.

Methods

Fifty 2-week-old Wistar rats were randomly divided into a blank control group, a model group, an early-stage acupuncture group, a middle-stage acupuncture group and a late-stage acupuncture group, 10 rats in each group. Monocular deprivation amblyopia models were prepared in rats except those in the blank control group by unilateral eyelid suture. After successful modeling, no treatment was applied to the rats in the model group. Rats in each acupuncture group were treated with acupuncture at bilateral Jingming (BL 1), Cuanzhu (BL 2), Fengchi (GB 20) and Guangming (GB 37), started from the 3rd day, 12th day or 21st day after modeling separately, once a day, for a total of 9 d treatment. The neuronal discharge frequency and action potential inter-spike interval (ISI) in the rat visual cortex area 17 of each group were measured by multi-channel microelectrode array nerve signal technique.

Results

The discharge number of neurons in the visual cortex of the model group was significantly lower than that in the blank control group (P<0.05). After treatment, the discharge numbers in the early-stage acupuncture group and the middle-stage acupuncture group were significantly higher than that in the model group (P<0.05). There was no significant difference in the discharge numbers between the late-stage acupuncture group and the model group (P>0.05). The discharge number in the middle-stage acupuncture group was lower than that in the early-stage acupuncture group (P<0.05), and the discharge number of the late-stage acupuncture group was lower than that in the middle-stage acupuncture group (P<0.05). The ISI sequences of the visual cortex neurons were mainly distributed under 0.3 s in the blank control group, under 15 s in the model group, under 1 s in the early-stage acupuncture group, under 4 s in the middle-stage acupuncture group, and under 10 s in the late-stage acupuncture group, divergent in each group.

Conclusion

The neuronal coding appears abnormality in the visual cortex area 17 of monocular deprivation rats, indicating that there is a plasticity change in the visual cortex neurons during the sensitive period. Acupuncture has a significant effect on the abnormal neural coding. The therapeutic efficacy is closely related to the stage to start the treatment. Early stage treatment in the sensitive period is the key to achieving the good efficacy.

摘要

目的

探讨敏感期内针刺干预视皮层可塑性的电生理机制。

方法

将50 只2 周龄的Wistar 大鼠随机分 为空白组、模型组、早期针刺组、中期针刺组和末期针刺组, 每组10 只。正常组不予任何处理, 模型组和各针 刺组采用单侧眼睑缝合的方法复制单眼剥夺弱视模型。造模成功后模型组不予任何治疗, 各针刺组选取双侧睛 明、攒竹、风池和光明分别在造模后第3 d、12 d 和21 d 开始针刺治疗, 每日1 次, 共治疗9 d。采用在体多通道 微电极阵列神经信号技术检测各组大鼠视皮层17 区神经元放电频率及动作电位峰-峰间期(ISI)。

结果

模型组大 鼠视皮层神经元放电次数较空白组显著减少(P<0.05); 治疗后早、中期针刺组放电次数较模型组明显增加 (P<0.05), 末期针刺组放电次数与模型组差异无统计学意义(P>0.05); 中期针刺组放电次数低于早期针刺组 (P<0.05), 末期针刺组放电次数低于中期针刺组(P<0.05)。空白组大鼠视皮层神经元ISI 序列集中分布在0.3 s 以 下, 模型组在15 s 以下, 早期针刺组在1 s 以下, 中期针刺组在4 s 以下, 末期针刺组在10 s 以下, 各组均呈发散 状。

结论

单眼剥夺后大鼠视皮层17 区神经元出现神经编码异常改变, 表明敏感期内视皮层神经元存在可塑性 变化; 而针刺对异常的神经编码有明显的调节作用, 且针刺疗效与治疗时机密切相关, 敏感期内早期治疗是取得 疗效的关键。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strabismus and Pediatric Ophthalmology Group of Chinese Medical Association Ophthalmology Branch. Expert consensus for amblyopia diagnosis (2011). Zhonghua Yanke Zazhi, 2011, 47(8): 768.

  2. He MG, Huang WY, Zheng YF, Huang L, Ellwein LB. Refractive error and visual impairment in school children in rural southern china. Ophthalmology, 2007, 114(2): 374–382.

    Article  PubMed  Google Scholar 

  3. Jin WP, Lin MG, Li HZ. Therapeutic observation on comprehensive therapies for amblyopia in children. Zhejiang Yufang Yixue, 2012, 24(10): 55–56.

    Google Scholar 

  4. Wang HF, Wang FC, Shi Y. Study on the correlation between the deprivation effect of resisting amblyopia of acupuncture and brain derived neurotrophic factor. Zhen Ci Yan Jiu, 2005, 30(4): 208–211.

    CAS  Google Scholar 

  5. Pan JW. Construction and Application of Multi-channel Recording System in Rats in vivo. Shanghai: Master Thesis of East China Normal University, 2008.

    Google Scholar 

  6. Wang ZQ, Liu XL, Mu YL, Liu AQ, Li XP. Expression of mGluR1 at primary visual cortex of monocular deprivation amblyopia rat and the observing of ultrastructure. Chin J Ophthalmol, 2008, 44(1): 67–71.

    Google Scholar 

  7. Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye on cortical unilateral bilateral eye closure on cortical unit responses in kittens. J Neurophysiol, 1965, 28(6): 1029–1040.

    CAS  PubMed  Google Scholar 

  8. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 1970, 206(2): 419–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin WZ, Wang P. Experimental Acupuncture Science. Shanghai: Shanghai Scientific and Technical Publishers, 1994: 287.

    Google Scholar 

  10. Zhou T, Guo Y, Guo YM, Chen ZL. Study of the neural coding based on acupuncture electrical signals: a review. Zhongxiyi Jiehe Xuebao, 2008, 6(12): 1300–1304.

    PubMed  Google Scholar 

  11. Popescu MV, Polley DB. Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 2010, 65(5): 718–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrett BT, Pacey IE, Bradley A, Thibos LN, Morrill P. Nonveridical visual perception in human amblyopia. Invest Ophth Vis Sci, 2003, 44(4): 1555–1567.

    Article  Google Scholar 

  13. Molotchnikoff S, Aitoubah J, Bretzner F, Shumikhina S, Tan YF, Guillemot JP. Comparative computations of spike synchronization in visual cortex of cats. Brain Res Protoc, 2001, 6(3): 148–158.

    Article  CAS  Google Scholar 

  14. Hirata Y, Aihara K. Representing spike trains using constant sampling intervals. J Neurosci Meth, 2009, 183 (2): 277–286.

    Article  Google Scholar 

  15. Ding Y. Study on Neural Spike Sorting and Neural Coding. Hangzhou: Master Thesis of Hangzhou Dianzi University, 2010.

    Google Scholar 

  16. Xie XQ, Wang H, Chen B, Zhou YF. Reaction characteristics of juvenile rats’ visual cortical neurons on the flash stimulation. Shengwu Huaxue Yu Shengwu Wuli Jinzhan, 2005, 32(11): 1088–1092.

    Google Scholar 

  17. Lu WH, Liu YY, Guo YM, Guo Y. Study on the patterns of neuron discharge sequence in the posterolateral nucleus of thalamus in normal rats with different frequency of lifting-thrusting and twirling manipulations at Zusanli (ST 36). Chinese Society of Acupuncture and Moxibustion Proceedings, 2011: 74–81.

    Google Scholar 

  18. Chen L, Liu YY, Guo Y, Li GL, Guo YM, Wang J, Li YL. Study on the discharge sequence coding of dorsal root ganglion neurons in normal rats with different frequency of lifting and thrusting of needle. Proceedings of the 2nd Academic Conference of Blood-letting Puncturing and Cupping Branch, Chinese Society of Acupuncture and Moxibustion, 2012: 105–110.

    Google Scholar 

  19. Zhu TT, Chen C, Yan XK. Regulation of acupuncture on NMDAR1 mRNA expression in visual cortex of monocularly-deprived rats. J Acupunct Tuina Sci, 2017, 15(1): 1–7.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China ( 国家自然科学基金项目, No. 81260560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-ke Yan  (严兴科).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Tt., Ma, Cb. & Yan, Xk. Study on intervention mechanism of acupuncture for neuron abnormal neural coding in visual cortex area 17 of monocular deprivation rats. J. Acupunct. Tuina. Sci. 15, 257–262 (2017). https://doi.org/10.1007/s11726-017-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-017-1010-2

Keywords

关键词

中图分类号

Navigation