Skip to main content
Log in

Magnetic confinement fusion: a brief review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasmafacing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piera M. Sustainability issues in the development of Nuclear Fission energy. Energy Conversion and Management, 2010, 51(5): 938–946

    Article  Google Scholar 

  2. Horvath A, Rachlew E. Nuclear power in the 21st century: challenges and possibilities. Ambio, 2016, 45(Suppl 1): 38–49

    Article  Google Scholar 

  3. Rogner H H. World energy demand and supply. IAEA, Vienna, Austria, 2012

    Google Scholar 

  4. Betti R, Hurricane O A. Inertial-confinement fusion with lasers. Nature Physics, 2016, 12(5): 435–448

    Article  Google Scholar 

  5. Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer WL, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D. Direct-drive inertial confinement fusion: a review. Physics of Plasmas, 2015, 22(11): 139–477

    Article  Google Scholar 

  6. Stacey W M. An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Fusion, Germany: Wiley-VCH, 2010

    Book  Google Scholar 

  7. Burdakov A V, Ivanov A A, Kruglyakov E P. Modern magnetic mirrors and their fusion prospects. Plasma Physics and Controlled Fusion, 2010, 52(12): 124026

    Article  Google Scholar 

  8. Fowler T K, Moir R W, Simonen T C. A new simpler way to obtain high fusion power gain in tandem mirrors. Nuclear Fusion, 2017, 57(5): 056014

    Article  Google Scholar 

  9. Clery D. Twisted logic. Science, 2015, 350(6259): 369–371

    Article  Google Scholar 

  10. Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch H S, Wendelstein 7-X team. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100000. Nature Communications, 2016, 7: 13493

    Article  Google Scholar 

  11. Bosch H S, Brakel R, Braeuer T, Bykov V, Eeten P, Feist J H, Fullenbach F, Gasparotto M, Grote H, Klinger T, Laqua H, Nagel M, Naujoks D, Otte M, Risse K, Rummel T, Schacht J, Spring A, Pedersen T S, Vilbrandt R, Wegener L, Werner A, Wolf R C, Baldzuhn J, Biedermann C, Braune H, Buihenn R, Hirsch M, Hofel U, Kanuer J, Kornejew P, Marsen S, Stange T, Mora H T, and W7-X team. Final integration, commissioning and start of the Wendelstein 7-X stellarator operation. Nuclear Fusion, 2017, 57(11): 116015

    Article  Google Scholar 

  12. Brotankova J, Cadwallader L C, Costley A E. Magnetic Fusion Technology Lecture Notes in Energy. New York: Springer, 2013

    Google Scholar 

  13. Ongena J, Koch R, Wolf R, Zohm H. Magnetic-confinement fusion. Nature Physics, 2016, 12(5): 398–410

    Article  Google Scholar 

  14. Butler D. ITER keeps eye on prize. Nature, 2013, 502(7471): 282–283

    Article  Google Scholar 

  15. Clery D. The new shape of fusion. Science, 2015, 348(6237): 854

    Article  Google Scholar 

  16. Chapman B E, Almagri A F, Anderson J K, Brower D L, Caspary K J, Clayton D J, Craig D, Hartog D J D, Ding WX, Ennis D A, Fiksel G, Gangadhara S, Kumar S, Magee R M, O’Connell R, Parke E, Prager S C, Reusch J A, Sarff J S, Stephens H D, Yang Y M. Generation and confinement of hot ions and electrons in a reversedfield pinch plasma. Plasma Physics and Controlled Fusion, 2010, 52(12): 124048

    Article  Google Scholar 

  17. Yamada H, Kasada R, Ozaki A, Sakamoto R, Sakamoto Y, Takenaga H, Tanaka T, Tanigawa H, Okano K, Tobita K, Kaneko O, Ushigusa K. Japanese endeavors to establish technological bases for DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1318–1325

    Article  Google Scholar 

  18. Brown T, Titus P, Brooks A, Zhang H, Neilson H, Im K, Kim K. Results of availability imposed configuration details developed for K-DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1091–1095

    Google Scholar 

  19. Federici G, Kemp R, Ward D, Bachmann C, Franke T, Gonzalez S, Lowry C, Gadomska M, Harman J, Meszaros B, Morlock C, Romanelli F, Wenninger R. Overview of EU DEMO design and R&D activities. Fusion Engineering and Design, 2014, 89(7–8): 882–889

    Article  Google Scholar 

  20. Zheng J, Liu X, Song Y, Wan Y, Li J, Wu S, Wan B, Ye M, Wei J, Xu W, Liu S, Weng P, Lu K, Luo Z. Concept design of CFETR superconducting magnet system based on different maintenance ports. Fusion Engineering and Design, 2013, 88(11): 2960–2966

    Article  Google Scholar 

  21. Buckingham R, Loving A. Remote-handling challenges in fusion research and beyond. Nature Physics, 2016, 12(5): 391–393

    Article  Google Scholar 

  22. Bruzzone P. Superconductivity and fusion energy-the inseparable companions. Superconductor Science and Technology, 2015, 28(2): 708–718

    Article  Google Scholar 

  23. Pan X F, Feng Y, Yan G, Cui L J, Chen C, Zhang Y, Wu Z X, Liu X H, Zhang P X, Bai Z M, Zhao Y, Li L F. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment. Superconductor Science and Technology, 2016, 29(1): 015008

    Article  Google Scholar 

  24. Fietz WH, Barth C, Drotziger S, Goldacker W, Heller R, Schlachter S I, Weiss K P. Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Engineering and Design, 2013, 88(6–8): 440–445

    Article  Google Scholar 

  25. Uglietti D, Bykovsky N, Wesche R, Bruzzone P. Development of HTS conductors for fusion magnets. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1–6

    Article  Google Scholar 

  26. Qin J G, Wu Y, Li J G, Dai C, Liu F. Manufacture and test of Bi- 2212 cable-in-conduit conductor. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1–5

    Article  Google Scholar 

  27. Zhou T, Lu K, Ran Q, Ding K, Feng H, Wu H, Liu C, Song Y, Niu E, Bauer P, Devred A. Mock-up qualification and prototype manufacture for ITER current leads. Fusion Engineering and Design, 2015, 96–97: 388–391

    Article  Google Scholar 

  28. Nishimura A. Need for development of higher strength cryogenic structural materials for fusion magnet. Advances in Cryogenic Engineering, 2014, 60: 333–339

    Google Scholar 

  29. Shen T, Li P, Jiang J, Cooley L, Tompkins J, McRae D, Walsh R. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications. Superconductor Science and Technology, 2015, 28(6): 065002

    Article  Google Scholar 

  30. Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88(6–8): 472–482

    Article  Google Scholar 

  31. Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12–19

    Article  Google Scholar 

  32. Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241–267

    Article  Google Scholar 

  33. Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. Silicon carbide composites as fusion power reactor structural materials. Journal of Nuclear Materials, 2011, 417(1–3): 330–339

    Article  Google Scholar 

  34. Huang Q. Status and improvement of CLAM for nuclear application. Nuclear Fusion, 2017, 57: 086042

    Article  Google Scholar 

  35. Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W. Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386(5): 411–417

    Article  Google Scholar 

  36. Kondo T. IFMIF, its facility concept and technology. Journal of Nuclear Materials, 1998, 258(4): 47–55

    Article  Google Scholar 

  37. Knaster J, Chel S, Fischer U, Groeschel F, Heidinger R, Ibarra A, Micciche G, Möslang A, Sugimoto M, Wakai E. IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453(1–3): 115–119

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCPQN201501), the National Magnetic Confinement Fusion Science Program (Grant No. 2015GB121001), and the National Natural Science Foundation of China (Grant Nos. 51427806, 51401224, and 51577185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Li, L. Magnetic confinement fusion: a brief review. Front. Energy 12, 305–313 (2018). https://doi.org/10.1007/s11708-018-0539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0539-1

Keywords

Navigation