Skip to main content

Advertisement

Log in

Technical and ethical considerations in telesurgery

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Telesurgery, a cutting-edge field at the intersection of medicine and technology, holds immense promise for enhancing surgical capabilities, extending medical care, and improving patient outcomes. In this scenario, this article explores the landscape of technical and ethical considerations that highlight the advancement and adoption of telesurgery. Network considerations are crucial for ensuring seamless and low-latency communication between remote surgeons and robotic systems, while technical challenges encompass system reliability, latency reduction, and the integration of emerging technologies like artificial intelligence and 5G networks. Therefore, this article also explores the critical role of network infrastructure, highlighting the necessity for low-latency, high-bandwidth, secure and private connections to ensure patient safety and surgical precision. Moreover, ethical considerations in telesurgery include patient consent, data security, and the potential for remote surgical interventions to distance surgeons from their patients. Legal and regulatory frameworks require refinement to accommodate the unique aspects of telesurgery, including liability, licensure, and reimbursement. Our article presents a comprehensive analysis of the current state of telesurgery technology and its potential while critically examining the challenges that must be navigated for its widespread adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Marescaux J, Leroy J, Rubino F et al (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492. https://doi.org/10.1097/00000658-200204000-00005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brower V (2002) The cutting edge in surgery: telesurgery has been shown to be feasible—now it has to be made economically viable. EMBO Rep 3(4):300–301. https://doi.org/10.1093/embo-reports/kvf083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Navarro EM, Ramos Álvarez AN, Soler Anguiano FI (2022) A new telesurgery generation supported by 5G technology: benefits and future trends. Procedia Computer Science 200:31–38. https://doi.org/10.1016/j.procs.2022.01.202

    Article  Google Scholar 

  4. Frenkel CH (2023) Telesurgery’s evolution during the robotic surgery renaissance and a systematic review of its ethical considerations. Surg Innov. https://doi.org/10.1177/15533506231169073

    Article  PubMed  Google Scholar 

  5. Olejarczyk JP, Young M (2023) Patient rights and ethics. StatPearls Publishing, Petersburg

    Google Scholar 

  6. Collins JW, Ghazi A, Stoyanov D et al (2020) Utilising an accelerated delphi process to develop guidance and protocols for telepresence applications in remote robotic surgery training. Eur Open Sci 22:23–33. https://doi.org/10.1016/j.euros.2020.09.005

    Article  Google Scholar 

  7. Meara JG, Leather AJM, Hagander L et al (2016) Global surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Int J Obstet Anesth 25:75–78. https://doi.org/10.1016/j.ijoa.2015.09.006

    Article  PubMed  Google Scholar 

  8. Dohler M (2021) The internet of skills: how 5g synchronized reality is transforming robotic surgery. Springer International Publishing, Berlin

    Google Scholar 

  9. Kim SSY, Dohler M, Dasgupta P (2018) The Internet of Skills: use of fifth-generation telecommunications, haptics and artificial intelligence in robotic surgery. BJU Int 122(3):356–358. https://doi.org/10.1111/bju.14388

    Article  PubMed  Google Scholar 

  10. Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027

    Article  Google Scholar 

  11. Miao Y, Jiang Y, Peng L, Hossain MS, Muhammad G (2018) Telesurgery robot based on 5G tactile internet. Mobile Netw Appl 23(6):1645–1654. https://doi.org/10.1007/s11036-018-1110-3

    Article  Google Scholar 

  12. Ji H, Park S, Yeo J, Kim Y, Lee J, Shim B (2018) Ultra-reliable and low-latency communications in 5g downlink: physical layer aspects. IEEE Wireless Commun 25(3):124–130. https://doi.org/10.1109/MWC.2018.1700294

    Article  Google Scholar 

  13. Farajiparvar P, Ying H, Pandya A (2020) A brief survey of telerobotic time delay mitigation. Front Robot AI 7:578805. https://doi.org/10.3389/frobt.2020.578805

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xia SB, Lu QS (2021) Development status of telesurgery robotic system. Chin J Traumatol 24(3):144–147. https://doi.org/10.1016/j.cjtee.2021.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel TM, Shah SC, Pancholy SB (2019) Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine 14:53–58. https://doi.org/10.1016/j.eclinm.2019.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wiklund P, Mottrie A, Gundeti MS, Patel V (2022) Robotic urologic surgery. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-031-00363-9

    Book  Google Scholar 

  17. Sachdeva N, Klopukh M, Clair RST, Hahn WE (2021) Using conditional generative adversarial networks to reduce the effects of latency in robotic telesurgery. J Robotic Surg 15(4):635–641. https://doi.org/10.1007/s11701-020-01149-5

    Article  Google Scholar 

  18. Nankaku A, Tokunaga M, Yonezawa H et al (2022) Maximum acceptable communication delay for the realization of telesurgery. PLoS ONE 17(10):e0274328. https://doi.org/10.1371/journal.pone.0274328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muchtar F, Abdullah AH, Al-Adhaileh M, Zamli KZ (2020) Energy conservation strategies in named data networking based MANET using congestion control: a review. J Netw Comput Appl 152:102511. https://doi.org/10.1016/j.jnca.2019.102511

    Article  Google Scholar 

  20. Engelbart M, Ott J. Congestion control for real-time media over QUIC. In: Proceedings of the 2021 Workshop on Evolution, Performance and Interoperability of QUIC. ACM; 2021:1–7.https://doi.org/10.1145/3488660.3493801

  21. Johansson I, Sarker Z. Self-Clocked Rate Adaptation for Multimedia. RFC Editor. 2017: RFC8298. doi:https://doi.org/10.17487/RFC8298

  22. Ahmed Solyman AA, Yahya K (2022) Evolution of wireless communication networks: from 1G to 6G and future perspective. IJECE 12(4):3943. https://doi.org/10.11591/ijece.v12i4.pp3943-3950

    Article  Google Scholar 

  23. Ahmadi S, Ahmadi S (2019) 5G NR: architecture, technology implementation, and operation of 3g pp new radio standards. Elsevier, Amsterdam

    Google Scholar 

  24. Börner Valdez L, Datta RR, Babic B, Müller DT, Bruns CJ, Fuchs HF (2021) 5G mobile communication applications for surgery: An overview of the latest literature. AIGE 2(1):1–11. https://doi.org/10.37126/aige.v2.i1.1

    Article  Google Scholar 

  25. Tikhvinskiy V, Bochechka G. Quality of service in the 5G network.

  26. Morohashi H, Hakamada K, Kanno T et al (2023) Construction of redundant communications to enhance safety against communication interruptions during robotic remote surgery. Sci Rep 13(1):10831. https://doi.org/10.1038/s41598-023-37730-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barba P, Stramiello J, Funk EK, Richter F, Yip MC, Orosco RK (2022) Remote telesurgery in humans: a systematic review. Surg Endosc 36(5):2771–2777. https://doi.org/10.1007/s00464-022-09074-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang T, Li R, Li Y, Zhang X, Liao H (2021) Augmented reality-based autostereoscopic surgical visualization system for telesurgery. Int J CARS 16(11):1985–1997. https://doi.org/10.1007/s11548-021-02463-5

    Article  Google Scholar 

  29. Schleer P, Kaiser P, Drobinsky S, Radermacher K (2020) Augmentation of haptic feedback for teleoperated robotic surgery. Int J CARS 15(3):515–529. https://doi.org/10.1007/s11548-020-02118-x

    Article  Google Scholar 

  30. Patel RV, Atashzar SF, Tavakoli M (2022) Haptic feedback and force-based teleoperation in surgical robotics. Proc IEEE 110(7):1012–1027. https://doi.org/10.1109/JPROC.2022.3180052

    Article  Google Scholar 

  31. Xu S, Perez M, Yang K, Perrenot C, Felblinger J, Hubert J (2014) Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer® simulator. Surg Endosc 28(9):2569–2576. https://doi.org/10.1007/s00464-014-3504-z

    Article  PubMed  Google Scholar 

  32. Hinterseer P, Hirche S, Chaudhuri S, Steinbach E, Buss M (2008) Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans Signal Process 56(2):588–597. https://doi.org/10.1109/TSP.2007.906746

    Article  Google Scholar 

  33. Chowriappa A, Wirz R, Ashammagari AR, Seo YW (2013) Prediction from expert demonstrations for safe tele-surgery. Int J Autom Comput 10(6):487–497. https://doi.org/10.1007/s11633-013-0746-5

    Article  Google Scholar 

  34. Orosco RK, Lurie B, Matsuzaki T et al (2021) Compensatory motion scaling for time-delayed robotic surgery. Surg Endosc 35(6):2613–2618. https://doi.org/10.1007/s00464-020-07681-7

    Article  PubMed  Google Scholar 

  35. Jacobs S, Holzhey D, Kiaii BB et al (2003) Limitations for manual and telemanipulator-assisted motion tracking—implications for endoscopic beating-heart surgery. Ann Thorac Surg 76(6):2029–2035. https://doi.org/10.1016/S0003-4975(03)01058-0

    Article  PubMed  Google Scholar 

  36. Cassilly R, Diodato MD, Bottros M, Damiano RJ (2004) Optimizing motion scaling and magnification in robotic surgery. Surgery 136(2):291–294. https://doi.org/10.1016/j.surg.2004.05.002

    Article  PubMed  Google Scholar 

  37. Prasad SM, Prasad SM, Maniar HS, Chu C, Schuessler RB, Damiano RJ (2004) Surgical robotics: impact of motion scaling on task performance. J Am Coll Surg 199(6):863–868. https://doi.org/10.1016/j.jamcollsurg.2004.08.027

    Article  PubMed  Google Scholar 

  38. Cha J, Broch A, Mudge S et al (2018) Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques. Biomed Opt Express 9(3):1097. https://doi.org/10.1364/BOE.9.001097

    Article  PubMed  PubMed Central  Google Scholar 

  39. Richter F, Zhang Y, Zhi Y, Orosco RK, Yip MC. Augmented reality predictive displays to help mitigate the effects of delayed telesurgery. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019:444–450. https://doi.org/10.1109/ICRA.2019.8794051

  40. Qian L, Deguet A, Kazanzides P (2018) ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery. Healthcare Technol Lett 5(5):194–200. https://doi.org/10.1049/htl.2018.5065

    Article  Google Scholar 

  41. Dohler M. Digital Innovation project buckinghamshire county council association of directors of environment, economy planning and transport (ADEPT). Kings College. London

  42. Collins JW, Marcus HJ, Ghazi A et al (2022) Ethical implications of AI in robotic surgical training: A Delphi consensus statement. Eur Urol Focus 8(2):613–622. https://doi.org/10.1016/j.euf.2021.04.006

    Article  PubMed  Google Scholar 

  43. Kazanzides P, Deguet A, Vagvolgyi B, Chen Z, Taylor RH (2015) Modular interoperability in surgical robotics software. Mech Eng 137(09):S19–S22. https://doi.org/10.1115/1.2015-Sep-10

    Article  Google Scholar 

  44. Hazra A, Adhikari M, Amgoth T, Srirama SN (2023) A comprehensive survey on interoperability for iiot: taxonomy, standards, and future directions. ACM Comput Surv 55(1):1–35. https://doi.org/10.1145/3485130

    Article  Google Scholar 

  45. King H. Preliminary protocol for interoperable telesurgery. In: ; 2009:1–6.

  46. T Bonaci J Herron T Yusuf J Yan T Kohno HJ Chizeck 2015. To make a robot secure: an experimental analysis of cyber security threats against teleoperated surgical robots Published online. https://doi.org/10.48550/ARXIV.1504.04339

  47. Al Asif MdR, Khondoker R. Cyber Security Threat Modeling of A Telesurgery System. In: 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE; 2020:1–6. doi:https://doi.org/10.1109/STI50764.2020.9350452

  48. Lee GS, Thuraisingham B (2012) Cyberphysical systems security applied to telesurgical robotics. Computer Standards Interf 34(1):225–229. https://doi.org/10.1016/j.csi.2011.09.001

    Article  CAS  Google Scholar 

  49. Bonaci T, Yan J, Herron J, Kohno T, Chizeck HJ (2015) Experimental analysis of denial-of-service attacks on teleosperated robotic systems. ACM. https://doi.org/10.1145/27359602735980

    Article  Google Scholar 

  50. Cherian MM, Varma SL (2021) Department of computer engineering, pillai college of engineering, navi mumbai, mumbai university, mitigation of DDOS and MiTM attacks using belief based secure correlation approach in SDN-based IoT networks. IJCNIS. 14(1):52–68. https://doi.org/10.5815/ijcnis.2022.01.05

    Article  Google Scholar 

  51. Hannaford B, Rosen J, Friedman DW et al (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 60(4):954–959. https://doi.org/10.1109/TBME.2012.2228858

    Article  PubMed  Google Scholar 

  52. Alemzadeh H, Chen D, Li X, Kesavadas T, Kalbarczyk ZT, Iyer RK. Targeted Attacks on teleoperated surgical robots: dynamic model-based detection and mitigation. In: 2016 46th Annual IEEE/IFIP International conference on dependable systems and networks (DSN). IEEE; 2016: 395–406. https://doi.org/10.1109/DSN.2016.43

  53. Q Zhang J Liu G Zhao 2018 Towards 5G enabled tactile robotic telesurgery Published online https://doi.org/10.48550/ARXIV.1803.03586

  54. Iqbal S, Farooq S, Shahzad K, Malik AW, Hamayun MM, Hasan O (2019) SecureSurgiNET: a framework for ensuring security in telesurgery. Int J Distrib Sens Netw 15(9):155014771987381. https://doi.org/10.1177/1550147719873811

    Article  Google Scholar 

  55. Kaur K, Garg S, Kaddoum G, Guizani M. Secure Authentication and Key Agreement Protocol for Tactile Internet-based Tele-Surgery Ecosystem. In: ICC 2020–2020 IEEE International Conference on Communications (ICC). IEEE; 2020:1–6. https://doi.org/10.1109/ICC40277.2020.9148835

  56. Watzlaf VJM, Zhou L, DeAlmeida DR, Hartman LM (2017) A systematic review of research studies examining telehealth privacy and security practices used by healthcare providers. Int J Telerehab 9(2):39–58. https://doi.org/10.5195/ijt.2017.6231

    Article  Google Scholar 

  57. Loftus TJ, Tighe PJ, Filiberto AC et al (2020) Artificial intelligence and surgical decision-making. JAMA Surg 155(2):148. https://doi.org/10.1001/jamasurg.2019.4917

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maier-Hein L, Eisenmann M, Sarikaya D et al (2022) Surgical data science—from concepts toward clinical translation. Med Image Anal 76:102306. https://doi.org/10.1016/j.media.2021.102306

    Article  PubMed  Google Scholar 

  59. Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268(1):70–76. https://doi.org/10.1097/SLA.0000000000002693

    Article  PubMed  Google Scholar 

  60. Kitaguchi D, Takeshita N, Hasegawa H, Ito M (2022) Artificial intelligence-based computer vision in surgery: recent advances and future perspectives. Ann Gastroent Surg 6(1):29–36. https://doi.org/10.1002/ags3.12513

    Article  Google Scholar 

  61. Hassan AM, Rajesh A, Asaad M et al (2023) Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications. Am Surg 89(1):25–30. https://doi.org/10.1177/00031348221101488

    Article  PubMed  Google Scholar 

  62. Hassan AM, Rajesh A, Asaad M et al (2023) A surgeon’s guide to artificial intelligence-driven predictive models. Am Surg 89(1):11–19. https://doi.org/10.1177/00031348221103648

    Article  PubMed  Google Scholar 

  63. Marino DL, Grandio J, Wickramasinghe CS, et al. AI Augmentation for Trustworthy AI: Augmented Robot Teleoperation. In: 2020 13th International Conference on Human System Interaction (HSI). IEEE; 2020:155–161. https://doi.org/10.1109/HSI49210.2020.9142659

  64. Wickramasinghe CS, Marino DL, Grandio J, Manic M. Trustworthy AI Development Guidelines for Human System Interaction. In: 2020 13th International Conference on Human System Interaction (HSI). IEEE; 2020:130–136. https://doi.org/10.1109/HSI49210.2020.9142644

  65. Seeliger B, Collins J, Porpiglia F, Marescaux J (2002) The role of virtual reality, telesurgery, and teleproctoring in robotic surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_8

    Book  Google Scholar 

  66. Parsons JA (2021) The telemedical imperative. Bioethics 35(4):298–306. https://doi.org/10.1111/bioe.12847

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fuertes-Guiro F, Viteri VE (2018) Ethical aspects involving the use of information technology in new surgical applications: telesurgery and surgical telementoring. Acta bioeth 24(2):167–179

    Article  Google Scholar 

  68. Anvari M (2004) Robot-assisted remote telepresence surgery. Surg Innov 11(2):123–128. https://doi.org/10.1177/107155170401100209

    Article  Google Scholar 

  69. Hung AJ, Chen J, Shah A, Gill IS (2018) Telementoring and telesurgery for minimally invasive procedures. J Urol 199(2):355–369. https://doi.org/10.1016/j.juro.2017.06.082

    Article  PubMed  Google Scholar 

  70. Castaneda P, Ellimoottil C (2020) Current use of telehealth in urology: a review. World J Urol 38(10):2377–2384. https://doi.org/10.1007/s00345-019-02882-9

    Article  PubMed  Google Scholar 

  71. Satava RM (2002) Disruptive visions. Surg Endosc 16(10):1403–1408. https://doi.org/10.1007/s00464-002-8587-2

    Article  CAS  PubMed  Google Scholar 

  72. Nguan CY, Morady R, Wang C et al (2008) Robotic pyeloplasty using internet protocol and satellite network-based telesurgery. Int J Med Robot Comput Assist Surg 4(1):10–14. https://doi.org/10.1002/rcs.173

  73. Liu R, Zhao G, Sun Y, Yang W, Liu J, Huang Y et al (2019) Animal experiment for 5G remote robotic surgery. Chin J Laparosc Surg (Electr Ed) [Internet] 12:45. https://doi.org/10.3877/cma.j.issn.1674-6899.2019.01.008

  74. Tian W, Fan M, Zeng C, Liu Y, He D, Zhang Q (2020) Telerobotic spinal Surgery based on 5G network: the first 12 cases. Neurospine [Internet]. 17(1):114–120. https://doi.org/10.14245/ns.1938454.227

  75. Acemoglu A, Peretti G, Trimarchi M, Hysenbelli J, Krieglstein J, Geraldes A, Deshpande N, Ceysens PMV, Caldwell DG, Delsanto M, Barboni O, Vio T, Baggioni S, Vinciguerra A, Sanna A, Oleari E, Camillo Carobbio AL, Guastini L, Mora F, Mattos LS. Operating from a distance: robotic vocal cord 5G Telesurgery on a cadaver

  76. TIM enables first live remote‐surgery consultation using 5G immersive reality | Mobile Marketing Magazine [Internet]. https://mobilemarketingmagazine.com/tim-enables-first-live-remote-surgery-consultation-using-5g-immersive-reality

  77. Zheng J, Wang Y, Zhang J, Guo W, Yang X, Luo L, Jiao W, Hu X, Yu Z, Wang C, Zhu L, Yang Z, Zhang M, Xie F, Jia Y, Li B, Li Z, Dong Q, Niu H (2020) 5G ultra-remote robot-assisted laparoscopic surgery in China. Surg Endosc [Internet]. 34(11):5172–5180. https://doi.org/10.1007/s00464-020-07823-x

  78. Chu G, Yang X, Luo L et al (2021) Improved robot-assisted laparoscopic telesurgery: feasibility of network converged communication. Br J Surg 108(11):e377–379. https://doi.org/10.1093/bjs/znab317

  79. Li J, Yang X, Chu G et al (2023) Application of Improved Robot-assisted Laparoscopic Telesurgery with 5G Technology in Urology. Eur Urol 83(1):41–44. https://doi.org/10.1016/j.eururo.2022.06.018

Download references

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

VP prepared figures, wrote and oversaw coordination SS wrote technical part in main manuscript MC wrote the ethical part in the main manuscript EP prepared the table PD, RS oversaw the ethical considerations MD, JC oversaw the technical considerations JM helped coordinate the preparation with VP

Corresponding author

Correspondence to Shady Saikali.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Saikali, S., Moschovas, M.C. et al. Technical and ethical considerations in telesurgery. J Robotic Surg 18, 40 (2024). https://doi.org/10.1007/s11701-023-01797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11701-023-01797-3

Keywords

Navigation