Skip to main content
Log in

Synthesis of tricyclic ring systems: [2+2] ketene addition reaction for preparation of tricyclic ketone, alcohol, and lactone derivatives

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The addition of dichloroketene to 1,4-cyclohexadiene was examined. Dichloroketene, which was easily prepared from trichloroacetyl chloride and Zn–Cu, reacted with 1,4-cyclohexadiene in the presence of POCl3 to afford novel racemic products of single addition (5) and double addition (6). The adducts 6 and 7 were reacted separately with MCPBA (meta-chloroperbenzoic acid), H2O2, LiAlH4, and cis-diol 10 was reacted with PCC (pyridinium chlorochromate) to afford lactone, alcohol, and ketone derivatives likely to exhibit biological activity. The structures of all the racemic molecules mentioned in the article were determined from 1H NMR, 13C NMR, MS, and IR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abel U, Koch C, Speitling M, Hansske FG (2002) Modern methods to produce natural-product libraries. Curr Opin Chem Biol 6(4):453–458. doi:10.1016/S1367-5931(02)00338-1

    Article  CAS  Google Scholar 

  • Albrecht A, Koszuk JF, Modranka J, Rozalski M, Krajewska U, Janecka A, Studzian K, Janecki T (2008) Synthesis and cytotoxic activity of gamma-aryl substituted alpha-alkylidene-gamma-lactones and alpha-alkylidene-gamma-lactams. Bioorg Med Chem 16:4872–4882. doi:10.1016/j.bmc.2008.03.035

    Article  CAS  Google Scholar 

  • Albrecht Q, Wojciechowski J, Albrecht A, Wolf WM, Janecka A, Studzian K, Krajewska U, Rozalski M, Janecki T, Krawczyk H (2010) Synthesis and cytotoxic evaluation of beta-alkyl or beta-aryl-delta-methyl-alpha-methylene-delta-lactones. Comparison with the corresponding gamma-lactones. Eur J Med Chem 45:710–718. doi:10.1016/j.ejmech.2009.11.018

    Article  CAS  Google Scholar 

  • Arya P, Joseph R, Chou DTH (2002) Toward high-throughout synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem Biol 9(2):145–156. doi:10.1016/S1074-5521(02)00105-9

    Article  CAS  Google Scholar 

  • Bandichhor R, Nosse B, Reiser O (2005) Paraconic acids—the natural products from lichen symbiont. Top Curr Chem 243:43–72. doi:10.1007/b96881

    CAS  Google Scholar 

  • Boudreaux Y, Bodio E, Willis C, Billaud C, Le Gall T, Mioskowski C (2008) Synthesis of vulpinic and pulvinic acids from tetronic acid. Tetrahedron 64:8930–8937. doi:10.1016/j.tet.2008.06.058

    Article  Google Scholar 

  • Brady WT (1971) Halogenated ketenes: valuable ıntermediates in organic synthesis. Synthesis 8:415–422. doi:10.1055/s-1971-21750

    Article  Google Scholar 

  • Bruker (2012) Program name(s) Bruker AXS Inc. Madison, Wisconsin, USA. [Older versions (pre-1997) should refer to Siemens Analytical X-ray Instruments Inc. instead of Bruker AXS.]

  • Castano M, Cardona W, Quinones W, Robledo S, Echeverri F (2009) Leishmanicidal activity of aliphatic and aromatic lactones: correlation structure-activity. Molecules 14:2491–2500. doi:10.3390/molecules14072491

    Article  CAS  Google Scholar 

  • Chen LH, Fang J, Li H, Demark-Wahnefried W, Lin X (2007) Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. Mol Cancer Ther 6:2581–2590. doi:10.1158/1535-7163.MCT-07-0220

    Article  CAS  Google Scholar 

  • da Silva R, de Souza GHB, da Silva AA, de Souza V, Pereira AC, de Royo VA, de Silva MLA, Donate PM, de Matos Araujo ALS, Carvalho JCT, Bastos JK (2005) Synthesis and biological activity evaluation of lignan lactones derived from (−)-cubebin. Bioorg Med Chem Lett 15:1033–1037. doi:10.1016/j.bmcl.2004.12.035

    Article  Google Scholar 

  • Gladkowski W, Skrobiszewski A, Mazur M, Siepka M, Pawlak A, Obminska-Mrukowicz B, Białonska A, Poradowski D, Drynda A, Urbaniak M (2013) Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron 69(48):10414–10423. doi:10.1016/j.tet.2013.09.094

    Article  CAS  Google Scholar 

  • Grabarczyk M, Maczka W, Winska K, Zarowska B, Anioł M (2014) The new halolactones and hydroxylactone with trimethylcyclohexene ring obtained through combined chemical and microbial processes. J Mol Catal B-Enzym 102:195–203. doi:10.1016/j.molcatb.2014.02.012

    Article  CAS  Google Scholar 

  • Gultekin MS, Celik M, Balci M (2004) Cyclitols: conduritols and related compounds. Curr Org Chem 8:1159–1186. doi:10.2174/1385272043370069

    Article  Google Scholar 

  • Hall DG, Manku S, Wang F (2001) Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J Comb Chem 3:125–150. doi:10.1021/cc0001001

    Article  CAS  Google Scholar 

  • Heravi MM, Talaei B (2014) Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3: six-membered heterocycles. Adv Heterocycl Chem 113:143–244. doi:10.1016/B978-0-12-800170-7.00004-3

    Article  CAS  Google Scholar 

  • Heravi MM, Talaei B (2015) Chapter three—ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv Heterocycl Chem 114:147–225. doi:10.1016/bs.aihch.2015.02.001

    Article  CAS  Google Scholar 

  • Hofmann HMR, Rabe J (1985) Synthesis and biological activity of α-methylene-γ-butyrolactones. Angew Chem Int Ed Engl 24:94. doi:10.1002/anie.198500941

    Article  Google Scholar 

  • Janecki T, Albrecht A, Warzycha E, Studzian K, Janecka A, Krajewska U, Rozalski M (2005) Enantioselective synthesis and cytotoxic evaluation of 4,5-dihydro-5-[aryl(hydroxy)methyl]-3-methylidenefuran-2(3H)-ones. Chem Biodivers 2:1256–1265. doi:10.1002/cbdv.200590096

    Article  CAS  Google Scholar 

  • Kishali NH, Doğan D, Şahin E, Gunel A, Kara Y, Balci M (2011) Stereoselective synthesis of deoxycarbaheptopyranose derivatives: 5a-carba-6-deoxy-α-DL-galactoheptopyranose and 5a-carba-6-deoxy-α-DL-gulo-heptopyranos. Tetrahedron 67(6):1193–1200. doi:10.1016/j.tet.2010.11.102

    Article  Google Scholar 

  • Knepper K, Gil C, Brase S (2003) Natural product-like and other biologically active heterocyclic libraries using solid-phase techniques in the post-genomic era. Comb Chem High T Scr 6(7):673–679. doi:10.2174/138620703771981232

    CAS  Google Scholar 

  • Koch SSC, Chamberlin AR (1995) In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Science, New York, Vol. 16, pp 687–725

  • Makama BY (2012) Stereoselective synthesis of bicyclic lactones via annelation protocol. Am J Org Chem 2(6):127–131. doi:10.5923/j.ajoc.20120206.01

    Article  Google Scholar 

  • Negishi EI, Kotora M (1997) Regio- and stereoselective synthesis of y-alkylidenebutenolides and related compounds. Tetrahedron 53:6707–6738. doi:10.1016/S0040-4020(97)00199-3

    Article  CAS  Google Scholar 

  • Rodrigues AM, Theodoro PN, Eparvier V, Basset C, Silva MR, Beauchne J, Espindola LS, Stien D (2010) Search for antifungal compounds from the wood of durable tropical trees. J Nat Prod 73:1706–1707. doi:10.1021/np1001412

    Article  CAS  Google Scholar 

  • Santos-Martinez N, Diaz L, Ordaz-Rosado D, Garcia-Quiroz D, Barrera D, Avila E, Halhali A, Medina-Franco Ibarra-SanchezMJ, Esparza-Lopez J, Camacho J, Larrea Garcia-Becerra R (2014) Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: a potential new therapeutic approach. BMC Cancer 14(230):1–10. doi:10.1186/1471-2407-14-230

    Google Scholar 

  • Schröder HC, Merz H, Steffen R, Muller WEG, Sarin PS, Trumm S, Schulz J, Eich E (1990) Differential in vitro anti-HIV activity of natural lignans. Z Naturforsch Sect C 45:1215–1221. doi:10.1515/znc-1990-11-1222

    Google Scholar 

  • Seitz M, Reiser O (2005) Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds. Curr Opin Chem Biol 9(3):285–292. doi:10.1016/j.cbpa.2005.03.005

    Article  CAS  Google Scholar 

  • Sengül ME, Simsek N, Balci M (2000) An unprecedented CoII-tetraphenylporphyrin-catalyzed decomposition of bicyclic endoperoxides: a new approach to substituted furofuran systems. Eur J Org Chem 7:1359–1363. doi:10.1002/1099-0690(200004)2000:7<1359:AID-EJOC1359>3.0.CO;2-B

    Article  Google Scholar 

  • Shain L, Hillis WE (1971) Phenolic extractives in Norway spruce and their effect on Fomes annosus. Phytopathology 61:841–845. doi:10.1094/Phyto-61-841

    Article  CAS  Google Scholar 

  • Sheldrick GM (1997) SHELXS 97 and SHELXL 97. University of Göttingen, Germany

    Google Scholar 

  • Snider BB (1988) Intramolecular cycloaddition reactions of ketenes and keteniminium salts with alkenes. Chem Rev 88(5):793–811. doi:10.1021/cr00087a005

    Article  CAS  Google Scholar 

  • Tandon S, Rastogi RP (1976) Wikstromol, a new lignan from Wikstroemia viridiflora. Phytochemistry 15:1789–1790. doi:10.1016/S0031-9422(00)97493-4

    Article  CAS  Google Scholar 

  • Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490–2494. doi:10.1016/j.phytochem.2008.06.015

    Article  CAS  Google Scholar 

  • Yang H, Hu GY, Chen Y, Wang Y, Wang ZH (2007) Synthesis, resolution, and antiplatelet activity of 3-substituted 1(3H)-isobenzofuranone. Bioorg Med Chem 17:5210–5213. doi:10.1016/j.bmcl.2007.06.082

    Article  CAS  Google Scholar 

  • Zengin M, Daştan A, Balcı M (1995) A new and efficient synthesis of indanone. Synth Commun 31(13):1993–1999. doi:10.1081/SCC-100104416

    Article  Google Scholar 

  • Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281. doi:10.1016/j.mib.2005.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are indebted to Mersin University (BAP-FBE KA (ÖY) 2014-1DR, 2015-AP4-1235 and BAP-FBE K (EYB) 2011-7 YL) for its financial support of this work. The authors acknowledge Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 from the State Planning Organization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Şimşek Kuş.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, Ö., Bekfelavi, E.Y., Kuş, N.Ş. et al. Synthesis of tricyclic ring systems: [2+2] ketene addition reaction for preparation of tricyclic ketone, alcohol, and lactone derivatives. Chem. Pap. 71, 929–938 (2017). https://doi.org/10.1007/s11696-016-0013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0013-7

Keywords

Navigation