Skip to main content

Advertisement

Log in

Changes in Gut Microbiota and Hormones After Bariatric Surgery: a Bench-to-Bedside Review

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Overweight and obesity are among the most prevalent non-communicable diseases which are generally treated successfully by bariatric or sleeve surgery. There are evidences affirming that sleeve surgery can manipulate the pH of the stomach and interact with the metabolism of fatty acids, carbohydrates, and bile acid transfer, leading to the overgrowth of gut microbiota. Therefore, this study aims to review the changes in gut microbiota and hormones after bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsukumo DM, Carvalho BM, Carvalho Filho MA, et al. Translational research into gut microbiota: new horizons on obesity treatment: updated 2014. Arch Endocrinol Metab. 2015;59(2):154–60.

    Article  Google Scholar 

  2. Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol. 2014;28(4):585–97.

    Article  CAS  Google Scholar 

  3. Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    Article  CAS  Google Scholar 

  4. Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016.

  5. Carding S, Verbeke K, Vipond DT, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26(1):26191.

    PubMed  Google Scholar 

  6. Ferreira CM, Vieira AT, Vinolo MAR, et al. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014;2014.

  7. Kennedy PJ, Cryan JF, Dinan TG, et al. Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol: WJG. 2014;20(39):14105–25.

    Article  Google Scholar 

  8. Karlsson F, Tremaroli V, Nielsen J, et al. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62(10):3341–9.

    Article  CAS  Google Scholar 

  9. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–52.e5.

    Article  Google Scholar 

  10. Calapkorur S, Köksal E. The relation between laparoscopic sleeve gastrectomy and ghrelin. Int J Med Res Health Sci. 2017;6(7):29–35.

    Google Scholar 

  11. Meek CL, Lewis HB, Reimann F, et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.

    Article  CAS  Google Scholar 

  12. Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.

    Article  Google Scholar 

  13. Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.

    Article  Google Scholar 

  14. Jacobsen SH, Olesen S, Dirksen C, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96.

    Article  CAS  Google Scholar 

  15. Dirksen C, Jørgensen N, Bojsen-Møller K, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013;37(11):1452–9.

    Article  CAS  Google Scholar 

  16. Sundbom M, Holdstock C, Engström BE, et al. Early changes in ghrelin following Roux-en-Y gastric bypass: influence of vagal nerve functionality? Obes Surg. 2007;17(3):304–10.

    Article  Google Scholar 

  17. Guidone C, Manco M, Valera-Mora E, et al. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55(7):2025–31.

    Article  CAS  Google Scholar 

  18. Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.

    Article  Google Scholar 

  19. Tsoli M, Chronaiou A, Kehagias I, et al. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9(5):667–77.

    Article  Google Scholar 

  20. Stenström B, Zhao C-M, Tømmerås K, et al. Is gastrin partially responsible for body weight reduction after gastric bypass? Eur Surg Res. 2006;38(2):94–101.

    Article  Google Scholar 

  21. Laferrere B, Swerdlow N, Bawa B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(8):4072–6.

    Article  CAS  Google Scholar 

  22. Farooqi SI. Genetic, molecular and physiological mechanisms involved in human obesity: Society for Endocrinology Medal Lecture 2012. Clin Endocrinol. 2015;82(1):23–8.

    Article  Google Scholar 

  23. Sørensen T, Price RA, Stunkard AJ, et al. Genetics of obesity in adult adoptees and their biological siblings. Bmj. 1989;298(6666):87–90.

    Article  Google Scholar 

  24. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  Google Scholar 

  25. Ameer F, Scandiuzzi L, Hasnain S, et al. De novo lipogenesis in health and disease. Metab Clin Exp. 2014;63(7):895–902.

    Article  CAS  Google Scholar 

  26. Kuo LE, Kitlinska JB, Tilan JU, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13(7):803–11.

    Article  CAS  Google Scholar 

  27. Farooqi IS, Keogh JM, Yeo GS, et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95.

    Article  CAS  Google Scholar 

  28. Asai M, Ramachandrappa S, Joachim M, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275–8.

    Article  CAS  Google Scholar 

  29. Yeo GS, Hung C-CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004;7(11):1187–9.

    Article  CAS  Google Scholar 

  30. Ramachandrappa S, Raimondo A, Cali AM, et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest. 2013;123(7):3042–50.

    Article  CAS  Google Scholar 

  31. Faivre L, Cormier-Daire V, Lapierre J, et al. Deletion of the SIM1 gene (6q16. 2) in a patient with a Prader-Willi-like phenotype. J Med Genet. 2002;39(8):594–6.

    Article  CAS  Google Scholar 

  32. Goldstone AP. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab. 2004;15(1):12–20.

    Article  CAS  Google Scholar 

  33. Pearce LR, Atanassova N, Banton MC, et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell. 2013;155(4):765–77.

    Article  CAS  Google Scholar 

  34. Peterson J, Garges S, Giovanni M, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.

    Article  Google Scholar 

  35. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–10.

    Article  CAS  Google Scholar 

  36. Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42.

    Article  Google Scholar 

  37. Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–9.

    Google Scholar 

  38. Beaugerie L, Petit J-C. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol. 2004;18(2):337–52.

    Article  CAS  Google Scholar 

  39. Hugon P, Dufour J-C, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211–9.

    Article  Google Scholar 

  40. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.

    Article  CAS  Google Scholar 

  41. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  Google Scholar 

  42. Khanna S, Tosh PK, editors. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings. Elsevier; 2014.

  43. Armougom F, Henry M, Vialettes B, et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):e7125.

    Article  Google Scholar 

  44. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. 2009;106(7):2365–70.

    Article  CAS  Google Scholar 

  45. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    Article  CAS  Google Scholar 

  46. Murphy R, Stewart A, Braithwaite I, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes. 2014;38(8):1115–9.

    Article  Google Scholar 

  47. Ajslev T, Andersen C, Gamborg M, et al. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35(4):522–9.

    Article  CAS  Google Scholar 

  48. Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23.

    Article  CAS  Google Scholar 

  49. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  Google Scholar 

  50. Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–4.

    Article  CAS  Google Scholar 

  51. Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.

    Article  CAS  Google Scholar 

  52. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  Google Scholar 

  53. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113(S1):S1–5.

    Article  CAS  Google Scholar 

  54. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    Article  Google Scholar 

  55. Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90(5):1236–43.

    Article  CAS  Google Scholar 

  56. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751–9.

    Article  CAS  Google Scholar 

  57. Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.

    Article  Google Scholar 

  58. Payne AN, Chassard C, Banz Y, et al. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol Ecol. 2012;80(3):608–23.

    Article  CAS  Google Scholar 

  59. Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci. 2007;104(3):979–84.

    Article  Google Scholar 

  60. Haslam D. Obesity: a medical history. Obes Rev. 2007;8(s1):31–6.

    Article  Google Scholar 

  61. Kushner RF, Kahan S. Introduction: the state of obesity in 2017. Med Clin. 2018;102(1):1–11.

    Google Scholar 

  62. Chaldakov GN. Obesity: an inside versus outside view Jimmy Bell and the Little Prince A science-in-fiction dedicated to World Obesity Day 2017. Scr Sci Vox Stud. 2017;1(1):13–7.

    Google Scholar 

  63. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr. 2007;137(11):2547S–51S.

    Article  CAS  Google Scholar 

  64. Goldberg RF, Austen WG, Zhang X, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci. 2008;105(9):3551–6.

    Article  CAS  Google Scholar 

  65. Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49(5):565–71.

    Article  Google Scholar 

  66. Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46.

    Article  Google Scholar 

  67. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Prev Biomark. 2007;16(12):2533–47.

    Article  Google Scholar 

  68. Jahansouz C, Staley C, Bernlohr DA, et al. Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surg Obes Relat Dis. 2017;13(6):916–24.

    Article  Google Scholar 

  69. Kim T, Holleman CL, Ptacek T, et al. Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Int J Obes. 2017;41(3):381–9.

    Article  CAS  Google Scholar 

  70. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  Google Scholar 

  71. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.

    Article  CAS  Google Scholar 

  72. Penney N, Kinross J, Newton R, et al. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes. 2015;39(11):1565–74.

    Article  CAS  Google Scholar 

  73. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.

    Article  Google Scholar 

  74. Kong L-C, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.

    Article  CAS  Google Scholar 

  75. Liou AP, Paziuk M, Luevano J-M, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    Article  Google Scholar 

  76. Ishida RK, Faintuch J, Paula AM, et al. Microbial flora of the stomach after gastric bypass for morbid obesity. Obes Surg. 2007;17(6):752–8.

    Article  Google Scholar 

  77. Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2012;9(10):590–8.

    Article  Google Scholar 

Download references

Acknowledgments

This article is part of the work by Mohsen Tabasi to fulfill the requirement for a PhD degree. We extend our heartfelt gratitude to all who have worked hard to make this project a success.

Funding

This work was financially supported by the Pasteur Institute of Iran (grant no.TP-9567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Davar Siadat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Gut microbiota community is considered a contributing factor in metabolic disorders such as obesity.

2. Bacteroidetes and Firmicutes are two important and dominant phyla in the human gastrointestinal tract.

3. After sleeve surgery, the frequency of Bacteroides, Gammaproteobacteria, Ruminococcus, and Roseovarius increased.

4. Bariatric surgery can help to prevent weight gain by reducing the size of the stomach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabasi, M., Ashrafian, F., Khezerloo, J.K. et al. Changes in Gut Microbiota and Hormones After Bariatric Surgery: a Bench-to-Bedside Review. OBES SURG 29, 1663–1674 (2019). https://doi.org/10.1007/s11695-019-03779-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03779-7

Keywords

Navigation