Skip to main content
Log in

Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Familial acne inversa (AI) is an autoinflammatory disorder that affects hair follicles and is caused by loss-of-function mutations in γ-secretase component genes. We and other researchers showed that nicastrin (NCSTN) is the most frequently mutated gene in familial AI. In this study, we generated a keratin 5-Cre-driven epidermis-specific Ncstn conditional knockout mutant in mice. We determined that this mutant recapitulated the major phenotypes of AI, including hyperkeratosis of hair follicles and inflammation. In Ncstnflox/flox;K5-Cre mice, the IL-36a expression level markedly increased starting from postnatal day 0 (P0), and this increase occurred much earlier than those of TNF-α, IL-23A, IL-1β, and TLR4. RNA-Seq analysis indicated that Sprr2d, a member of the small proline-rich protein 2 family, in the skin tissues of the Ncstnflox/flox;K5-Cre mice was also upregulated on P0. Quantitative reverse-transcription polymerase chain reaction showed that other Sprr2 genes had a similar expression pattern. Our findings suggested that IL-36a might be a key inflammatory cytokine in the pathophysiology of AI and involved in the malfunction of the skin barrier in the pathogenesis of AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Revuz J. Hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2009; 23(9): 985–998

    CAS  PubMed  Google Scholar 

  2. Garg A, Kirby JS, Lavian J, Lin G, Strunk A. Sex- and age-adjusted population analysis of prevalence estimates for hidradenitis suppurativa in the United States. JAMA Dermatol 2017; 153(8): 760–764

    PubMed  PubMed Central  Google Scholar 

  3. Revuz JE, Canoui-Poitrine F, Wolkenstein P, Viallette C, Gabison G, Pouget F, Poli F, Faye O, Roujeau JC, Bonnelye G, Grob JJ, Bastuji-Garin S. Prevalence and factors associated with hidradenitis suppurativa: results from two case-control studies. J Am Acad Dermatol 2008; 59(4): 596–601

    PubMed  Google Scholar 

  4. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38

    CAS  PubMed  Google Scholar 

  5. Jemec GB, Heidenheim M, Nielsen NH. The prevalence of hidradenitis suppurativa and its potential precursor lesions. J Am Acad Dermatol 1996; 35(2 Pt 1): 191–194 2016; 34(1): 23–28

    CAS  PubMed  Google Scholar 

  6. Schmitt JV, Bombonatto G, Martin M, Miot HA. Risk factors for hidradenitis suppurativa: a pilot study. An Bras Dermatol 2012; 87(6): 936–938

    PubMed  PubMed Central  Google Scholar 

  7. Brook I, Frazier EH. Aerobic and anaerobic microbiology of axillary hidradenitis suppurativa. J Med Microbiol 1999; 48(1): 103–105

    CAS  PubMed  Google Scholar 

  8. Jansen I, Altmeyer P, Piewig G. Acne inversa (alias hidradenitis suppurativa). J Eur Acad Dermatol Venereol 2001; 15(6): 532–540

    CAS  PubMed  Google Scholar 

  9. Gao M, Wang PG, Cui Y, Yang S, Zhang YH, Lin D, Zhang KY, Liang YH, Sun LD, Yan KL, Xiao FL, Huang W, Zhang XJ. Inversa acne (hidradenitis suppurativa): a case report and identification of the locus at chromosome 1p21.1-1q25.3. J Invest Dermatol 2006; 126(6): 1302–1306

    CAS  PubMed  Google Scholar 

  10. Von DerWerth JM, Williams HC, Raeburn JA. The clinical genetics of hidradenitis suppurativa revisited. Br J Dermatol 2015; 142: 947–953

    Google Scholar 

  11. Nomura Y, Nomura T, Suzuki S, Takeda M, Mizuno O, Ohguchi Y, Abe R, Murata Y, Shimizu H. A novel NCSTN mutation alone may be insufficient for the development of familial hidradenitis suppurativa. J Dermatol Sci 2014; 74(2): 180–182

    CAS  PubMed  Google Scholar 

  12. Wang B, Yang W, Wen W, Sun J, Su B, Liu B, Ma D, Lv D, Wen Y, Qu T, Chen M, Sun M, Shen Y, Zhang X. γ-Secretase gene mutations in familial acne inversa. Science 2010; 330(6007): 1065

    CAS  PubMed  Google Scholar 

  13. Kelleher RJ 3rd, Shen J. Genetics. γ-Secretase and human disease. Science 2010; 330(6007): 1055–1056

    PubMed  PubMed Central  Google Scholar 

  14. Prens E, Deckers I. Pathophysiology of hidradenitis suppurativa: an update. J Am Acad Dermatol 2015; 73(5 Suppl 1): S8–S11

    CAS  PubMed  Google Scholar 

  15. Alikhan A, Lynch PJ, Eisen DB. Hidradenitis suppurativa: a comprehensive review. J Am Acad Dermatol 2009; 60(4): 539–561, quiz 562–563

    PubMed  Google Scholar 

  16. Andersen RK, Jemec GB. Treatments for hidradenitis suppurativa. Clin Dermatol 2017; 35(2): 218–224

    PubMed  Google Scholar 

  17. Giamarellos-Bourboulis EJ, Antonopoulou A, Petropoulou C, Mouktaroudi M, Spyridaki E, Baziaka F, Pelekanou A, Giamarellou H, Stavrianeas NG. Altered innate and adaptive immune responses in patients with hidradenitis suppurativa. Br J Dermatol 2007; 156(1): 51–56

    CAS  PubMed  Google Scholar 

  18. Chen Q, Bao H, Wu H, Zhao S, Huang S, Zhao F. Diagnosis of cobalamin C deficiency with renal abnormality from onset in a Chinese child by next generation sequencing: a case report. Exp Ther Med 2017; 14(4): 3637–3643

    PubMed  PubMed Central  Google Scholar 

  19. Sullivan TP, Welsh E, Kerdel FA, Burdick AE, Kirsner RS. Infliximab for hidradenitis suppurativa. Br J Dermatol 2003; 149(5): 1046–1049

    CAS  PubMed  Google Scholar 

  20. Kurayev A, Ashkar H, Saraiya A, Gottlieb AB. Hidradenitis suppurativa: review of the pathogenesis and treatment. J Drugs Dermatol 2016; 15(8): 1017–1022

    CAS  PubMed  Google Scholar 

  21. Kelly G, Hughes R, McGarry T, van den Born M, Adamzik K, Fitzgerald R, Lawlor C, Tobin AM, Sweeney CM, Kirby B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br J Dermatol 2015; 173(6): 1431–1439

    CAS  PubMed  Google Scholar 

  22. Tong L, Corrales RM, Chen Z, Villarreal AL, De Paiva CS, Beuerman R, Li DQ, Pflugfelder SC. Expression and regulation of cornified envelope proteins in human corneal epithelium. Invest Ophthalmol Vis Sci 2006; 47(5): 1938–1946

    PubMed  Google Scholar 

  23. Affymetrix. GeneChip® Expression Analysis. Data Analysis Fundamentals. 2004

    Google Scholar 

  24. Anders S, Huber W. Differential expression of RNA-Seq data at the gene level — the DESeq package. DESeq version 1.38.0. European Molecular Biology Laboratory (EMBL). 2013

    Google Scholar 

  25. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNAseq data. Bioinformatics 2010; 26(1): 136–138

    PubMed  Google Scholar 

  26. Nomura Y, Nomura T, Suzuki S, Takeda M, Mizuno O, Ohguchi Y, Abe R, Murata Y, Shimizu H. A novel NCSTN mutation alone may be insufficient for the development of familial hidradenitis suppurativa. J Dermatol Sci 2014; 74(2): 180–182

    CAS  PubMed  Google Scholar 

  27. Zhang X, Sisodia SS. Acne inversa caused by missense mutations in NCSTN is not fully compatible with impairments in Notch signaling. J Invest Dermatol 2015; 135(2): 618–620

    CAS  PubMed  Google Scholar 

  28. Xiao X, He Y, Li C, Zhang X, Xu H, Wang B. Nicastrin mutations in familial acne inversa impact keratinocyte proliferation and differentiation through the Notch and phosphoinositide 3-kinase/AKT signalling pathways. Br J Dermatol 2016; 174(3): 522–532

    CAS  PubMed  Google Scholar 

  29. Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X. Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 2005; 65(19): 8671–8678

    CAS  PubMed  Google Scholar 

  30. Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, Jorcano JL. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 2004; 39(1): 52–57

    CAS  PubMed  Google Scholar 

  31. Wang B, Yang W, Wen W, Sun J, Su B, Liu B, Ma D, Lv D, Wen Y, Qu T, Chen M, Sun M, Shen Y, Zhang X. γ-Secretase gene mutations in familial acne inversa. Science 2010; 330(6007): 1065

    CAS  PubMed  Google Scholar 

  32. Pink AE, Simpson MA, Desai N, Trembath RC, Barker JNW. γ-Secretase mutations in hidradenitis suppurativa: new insights into disease pathogenesis. J Invest Dermatol 2013; 133(3): 601–607

    CAS  PubMed  Google Scholar 

  33. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 2016; 184(2): 159–173

    CAS  PubMed  Google Scholar 

  34. Pink AE, Simpson MA, Brice GW, Smith CH, Desai N, Mortimer PS, Barker JN, Trembath RC. PSENEN and NCSTN mutations in familial hidradenitis suppurativa (acne inversa). J Invest Dermatol 2011; 131(7): 1568–1570

    CAS  PubMed  Google Scholar 

  35. Xu H, Xiao X, Hui Y, Zhang X, He Y, Li C, Wang B. Phenotype of 53 Chinese individuals with nicastrin gene mutations in association with familial hidradenitis suppurativa (acne inversa). Br J Dermatol 2016; 174(4): 927–929

    CAS  PubMed  Google Scholar 

  36. van der Zee HH, Laman JD, Boer J, Prens EP. Hidradenitis suppurativa: viewpoint on clinical phenotyping, pathogenesis and novel treatments. Exp Dermatol 2012; 21(10): 735–739

    PubMed  Google Scholar 

  37. van der Meer JW, Simon A. The challenge of autoinflammatory syndromes: with an emphasis on hyper-IgD syndrome. Rheumatology (Oxford) 2016; 55(suppl 2): ii23–ii29

    Google Scholar 

  38. Hessam S, Sand M, Gambichler T, Skrygan M, Rüddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. Br J Dermatol 2018; 178(3): 761–767

    CAS  PubMed  Google Scholar 

  39. Witte-Händel E, Wolk K, Tsaousi A, Irmer ML, Möβner R, Shomroni O, Lingner T, Witte K, Kunkel D, Salinas G, Jodl S, Schmidt N, Sterry W, Volk HD, Giamarellos-Bourboulis EJ, Pokrywka A, Döcke WD, Schneider-Burrus S, Sabat R. The IL-1 pathway is hyperactive in hidradenitis suppurativa and contributes to skin infiltration and destruction. J Invest Dermatol 2019; 139(6): 1294–1305

    PubMed  Google Scholar 

  40. Thomi R, Kakeda M, Yawalkar NSchlapbach C, Hunger RE. Increased expression of the interleukin-36 cytokines in lesions of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2017; 31(12): 2091–2096

    CAS  PubMed  Google Scholar 

  41. Di Caprio R, Balato A, Caiazzo G, Lembo S, Raimondo A, Fabbrocini G, Monfrecola G. IL-36 cytokines are increased in acne and hidradenitis suppurativa. Arch Dermatol Res 2017; 309(8): 673–678

    PubMed  Google Scholar 

  42. Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE. Four new members expand the interleukin-1 superfamily. J Biol Chem 2000; 275(2): 1169–1175

    CAS  PubMed  Google Scholar 

  43. Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’ Toole M, Young DA, Fouser LA, Nickerson-Nutter C, Collins M, Dunussi-Joannopoulos K, Medley QG. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol 2011; 131(12): 2428–2437

    CAS  PubMed  Google Scholar 

  44. Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N, Kanaly ST, Towne JE, Willis CR, Kuechle MK, Sims JE, Peschon JJ. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med 2007; 204(11): 2603–2614

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL- 1RAcP to activate the pathway leading to NF-κB and MAPKs. J Biol Chem 2004; 279(14): 13677–13688

    CAS  PubMed  Google Scholar 

  46. Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells. Blood 2012; 120(17): 3478–3487

    CAS  PubMed  Google Scholar 

  47. Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa: an approach to pathogenesis by evidence from translational biology. Exp Dermatol 2013; 22(3): 172–177

    CAS  PubMed  Google Scholar 

  48. Wolk K, Wenzel J, Tsaousi A, Witte-Händel E, Babel N, Zelenak C, Volk HD, Sterry W, Schneider-Burrus S, Sabat R. Lipocalin-2 is expressed by activated granulocytes and keratinocytes in affected skin and reflects disease activity in acne inversa/hidradenitis suppurativa. Br J Dermatol 2017; 177(5): 1385–1393

    CAS  PubMed  Google Scholar 

  49. Steinert PM, Candi E, Kartasova T, Marekov L. Small proline-rich proteins are cross-bridging proteins in the cornified cell envelopes of stratified squamous epithelia. J Struct Biol 1998; 122(1-2): 76–85

    CAS  PubMed  Google Scholar 

  50. Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S, Yamamoto M, Kensler TW. Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 2010; 3(130): ra52

    PubMed  PubMed Central  Google Scholar 

  51. Schfer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, Hohl D, Bloch W, Werner S. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 2012 (4): 364–379

    Google Scholar 

  52. Wakabayashi N, Chartoumpekis DV, Kensler TW. Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med 2015; 88 (Pt B): 158–167

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, Shigemura N, Biswal S, Yamamoto M, Kensler TW. Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by Notch signaling. Mol Cell Biol 2014; 34(4): 653–663

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0905100), the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-1-002), the National Natural Science Foundation of China (NSFC; No. 81230015), and the Beijing Municipal Science and Technology Commission (No. Z151100003915078) for Xue Zhang and by the National NSFC (No. 31271345) for Yaping Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaping Liu or Xue Zhang.

Ethics declarations

Jun Yang, Lianqing Wang, Yingzhi Huang, Keqiang Liu, Chaoxia Lu, Nuo Si, Rongrong Wang, Yaping Liu, and Xue Zhang state no conflict of interest. All animal studies and procedures were approved by the Institutional Animal Care and Use Committee of Peking Union Medical College (Beijing, China).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, L., Huang, Y. et al. Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression. Front. Med. 14, 305–317 (2020). https://doi.org/10.1007/s11684-019-0722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-019-0722-8

Keywords

Navigation