Skip to main content

Advertisement

Log in

Intrinsic connectivity identifies the sensory-motor network as a main cross-network between remitted late-life depression- and amnestic mild cognitive impairment-targeted networks

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Remitted late-life depression (rLLD) and amnestic mild cognitive impairment (aMCI) are both associated with a high risk of developing Alzheimer’s disease (AD). Neurodegeneration is considered to spread within pre-existing networks. To investigate whether, in the healthy brain, there was a pre-existing cross-network between the intrinsic networks that are vulnerable to rLLD and aMCI. We performed functional connectivity analyses based on brain areas with the greatest brain neuronal activity differences in 55 rLLD, 87 aMCI, and 114 healthy controls. Intrinsic networks that were differentially vulnerable to rLLD and aMCI converged onto the sensory-motor network (SMN) in the healthy brain. These regions in the SMN within the aMCI- and rLLD-vulnerable networks played different roles in the cognitive functions. This study identifies the SMN as a cross-network between rLLD- and aMCI-vulnerable networks. The common susceptibility of these diseases to AD is likely due to the breakdown of the cross-network. The results further suggest that interventions targeting the amelioration of sensory-motor deficits in the early course of disease in individuals with AD risk may enhance patient function as AD pathology progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alalade, E., Denny, K., Potter, G., Steffens, D., & Wang, L. (2011). Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One, 6(5), e20035.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albers, M. W., Gilmore, G. C., Kaye, J., Murphy, C., Wingfield, A., Bennett, D. A., Boxer, A. L., Buchman, A. S., Cruickshanks, K. J., Devanand, D. P., Duffy, C. J., Gall, C. M., Gates, G. A., Granholm, A. C., Hensch, T., Holtzer, R., Hyman, B. T., Lin, F. R., McKee, A. C., Morris, J. C., Petersen, R. C., Silbert, L. C., Struble, R. G., Trojanowski, J. Q., Verghese, J., Wilson, D. A., Xu, S., & Zhang, L. I. (2015). At the interface of sensory and motor dysfunctions and Alzheimer's disease. Alzheimers Dement, 11(1), 70–98.

    PubMed  Google Scholar 

  • Alexopoulos, G. S. (2005). Depression in the elderly. Lancet, 365(9475), 1961–1970.

    PubMed  Google Scholar 

  • Alexopoulos, G. S., Meyers, B. S., et al. (1993). The course of geriatric depression with "reversible dementia": A controlled study. The American Journal of Psychiatry, 150(11), 1693–1699.

    CAS  PubMed  Google Scholar 

  • Apostolova, L. G., Dinov, I. D., Dutton, R. A., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2006). 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease. Brain, 129(Pt 11, 2867–2873.

    PubMed  Google Scholar 

  • Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., Wang, J., Xia, M., He, Y., & Zhang, Z. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. The Journal of Neuroscience, 32(12), 4307–4318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla, R. K., Butters, M. A., Becker, J. T., Houck, P. R., Snitz, B. E., Lopez, O. L., Aizenstein, H. J., Raina, K. D., DeKosky, S. T., & Reynolds, C. F., III. (2009). Patterns of mild cognitive impairment after treatment of depression in the elderly. The American Journal of Geriatric Psychiatry, 17(4), 308–316.

    PubMed  PubMed Central  Google Scholar 

  • Biswal, B., Yetkin, F. Z., et al. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    CAS  PubMed  Google Scholar 

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 29(6), 1860–1873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345.

    PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.

    PubMed  Google Scholar 

  • Butters, M. A., Klunk, W. E., Mathis, C. A., Price, J. C., Ziolko, S. K., Hoge, J. A., Tsopelas, N. D., Lopresti, B. J., Reynolds, C. F., III, DeKosky, S. T., & Meltzer, C. C. (2008). Imaging Alzheimer pathology in late-life depression with PET and Pittsburgh compound-B. Alzheimer Disease and Associated Disorders, 22(3), 261–268.

    PubMed  PubMed Central  Google Scholar 

  • Byers, A. L., & Yaffe, K. (2011). Depression and risk of developing dementia. Nature Reviews. Neurology, 7(6), 323–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byers, A. L., Covinsky, K. E., Barnes, D. E., & Yaffe, K. (2012). Dysthymia and depression increase risk of dementia and mortality among older veterans. The American Journal of Geriatric Psychiatry, 20(8), 664–672.

    PubMed  PubMed Central  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3, 564–583.

    PubMed  Google Scholar 

  • Chen, R., Hu, Z., Wei, L., Qin, X., McCracken, C., & Copeland, J. R. (2008). Severity of depression and risk for subsequent dementia: Cohort studies in China and the UK. The British Journal of Psychiatry, 193(5), 373–377.

    PubMed  Google Scholar 

  • Chen, J., Shu, H., et al. (2015a). The interaction of APOE genotype by age in amnestic mild cognitive impairment: A voxel-based morphometric study. Journal of Alzheimer's Disease, 43(2), 657–668.

    CAS  PubMed  Google Scholar 

  • Chen, J., Zhang, Z., & Li, S. (2015b). Can multi-modal neuroimaging evidence from hippocampus provide biomarkers for the progression of amnestic mild cognitive impairment? Neuroscience Bulletin, 31(1), 128–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Duan, X., Shu, H., Wang, Z., Long, Z., Liu, D., Liao, W., Shi, Y., Chen, H., & Zhang, Z. (2016a). Differential contributions of subregions of medial temporal lobe to memory system in amnestic mild cognitive impairment: Insights from fMRI study. Scientific Reports, 6, 26148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Shu, H., Wang, Z., Liu, D., Shi, Y., Xu, L., & Zhang, Z. (2016b). Protective effect of APOE epsilon 2 on intrinsic functional connectivity of the entorhinal cortex is associated with better episodic memory in elderly individuals with risk factors for Alzheimer's disease. Oncotarget, 7(37), 58789–58801.

    PubMed  PubMed Central  Google Scholar 

  • Chen, J., Shu, H., Wang, Z., Zhan, Y., Liu, D., Liao, W., Xu, L., Liu, Y., & Zhang, Z. (2016c). Convergent and divergent intranetwork and internetwork connectivity patterns in patients with remitted late-life depression and amnestic mild cognitive impairment. Cortex, 83, 194–211.

    PubMed  Google Scholar 

  • de Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D. H., Kopeikina, K. J., Pitstick, R., Sahara, N., Ashe, K. H., Carlson, G. A., Spires-Jones, T. L., & Hyman, B. T. (2012). Propagation of tau pathology in a model of early Alzheimer's disease. Neuron, 73(4), 685–697.

    PubMed  PubMed Central  Google Scholar 

  • Drzezga, A., Becker, J. A., van Dijk, K. R. A., Sreenivasan, A., Talukdar, T., Sullivan, C., Schultz, A. P., Sepulcre, J., Putcha, D., Greve, D., Johnson, K. A., & Sperling, R. A. (2011). Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain, 134(Pt 6, 1635–1646.

    PubMed  PubMed Central  Google Scholar 

  • Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B. S., Chen, K., & Buxton, R. B. (2009). Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups. Neuroimage, 47(4), 1678–1690.

    PubMed  PubMed Central  Google Scholar 

  • Goncalves, S. I., de Munck, J. C., et al. (2006). Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage, 30(1), 203–213.

    CAS  PubMed  Google Scholar 

  • Gottwald, B., Mihajlovic, Z., Wilde, B., & Mehdorn, H. M. (2003). Does the cerebellum contribute to specific aspects of attention? Neuropsychologia, 41(11), 1452–1460.

    PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    CAS  PubMed  Google Scholar 

  • Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Wahlund, L. O., Almkvist, O., Elehu, D., Svensson, L., Jonsson, T., Winblad, B., & Julin, P. (2003). Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage, 19(3), 1137–1144.

    CAS  PubMed  Google Scholar 

  • Huang, C., Eidelberg, D., Habeck, C., Moeller, J., Svensson, L., Tarabula, T., & Julin, P. (2007). Imaging markers of mild cognitive impairment: Multivariate analysis of CBF SPECT. Neurobiology of Aging, 28(7), 1062–1069.

    CAS  PubMed  Google Scholar 

  • Kemppainen, N. M., Aalto, S., Wilson, I. A., Nagren, K., Helin, S., Bruck, A., Oikonen, V., Kailajarvi, M., Scheinin, M., Viitanen, M., Parkkola, R., & Rinne, J. O. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 68(19), 1603–1606.

    CAS  PubMed  Google Scholar 

  • Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.

    PubMed  Google Scholar 

  • Kumar, A., Bilker, W., Jin, Z., & Udupa, J. (2000). Atrophy and high intensity lesions: Complementary neurobiological mechanisms in late-life major depression. Neuropsychopharmacology, 22(3), 264–274.

    CAS  PubMed  Google Scholar 

  • La Joie, R., Landeau, B., et al. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer's and semantic dementia-targeted networks. Neuron, 81(6), 1417–1428.

    PubMed  Google Scholar 

  • Landau, S. M., Harvey, D., Madison, C. M., Reiman, E. M., Foster, N. L., Aisen, P. S., Petersen, R. C., Shaw, L. M., Trojanowski, J. Q., Jack, C. R., Weiner, M. W., Jagust, W. J., & On behalf of the Alzheimer's Disease Neuroimaging Initiative. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75(3), 230–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, M., Madison, C. M., Ghosh, P. M., Seeley, W. W., Mormino, E., Greicius, M. D., Gorno-Tempini, M. L., Kramer, J. H., Miller, B. L., Jagust, W. J., & Rabinovici, G. D. (2013). Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11606–11611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leichnetz, G. R. (2001). Connections of the medial posterior parietal cortex (area 7m) in the monkey. The Anatomical Record, 263(2), 215–236.

    CAS  PubMed  Google Scholar 

  • Liu, F., Hu, M., Wang, S., Guo, W., Zhao, J., Li, J., Xun, G., Long, Z., Zhang, J., Wang, Y., Zeng, L., Gao, Q., Wooderson, S. C., Chen, J., & Chen, H. (2012). Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: A resting-state fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 39(2), 326–331.

    Google Scholar 

  • Liu, Y., Yu, C., Zhang, X., Liu, J., Duan, Y., Alexander-Bloch, A. F., Liu, B., Jiang, T., & Bullmore, E. (2014). Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease. Cerebral Cortex, 24(6), 1422–1435.

    PubMed  Google Scholar 

  • Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage, 44(3), 893–905.

    PubMed  Google Scholar 

  • Myers, N., Pasquini, L., Göttler, J., Grimmer, T., Koch, K., Ortner, M., Neitzel, J., Mühlau, M., Förster, S., Kurz, A., Förstl, H., Zimmer, C., Wohlschläger, A. M., Riedl, V., Drzezga, A., & Sorg, C. (2014). Within-patient correspondence of amyloid-beta and intrinsic network connectivity in Alzheimer's disease. Brain, 137(Pt 7, 2052–2064.

    PubMed  PubMed Central  Google Scholar 

  • Panza, F., Frisardi, V., Capurso, C., D'Introno, A., Colacicco, A. M., Imbimbo, B. P., Santamato, A., Vendemiale, G., Seripa, D., Pilotto, A., Capurso, A., & Solfrizzi, V. (2010). Late-life depression, mild cognitive impairment, and dementia: possible continuum? The American Journal of Geriatric Psychiatry, 18(2), 98–116.

    PubMed  Google Scholar 

  • Peraza, L. R., Colloby, S. J., et al. (2016). Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease. International Psychogeriatrics, 1–9.

  • Petersen, R. C. (2011). Clinical practice. Mild cognitive impairment. The New England Journal of Medicine, 364(23), 2227–2234.

    CAS  PubMed  Google Scholar 

  • Petersen, R. C., & Negash, S. (2008). Mild cognitive impairment: An overview. CNS Spectrums, 13(1), 45–53.

    PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    CAS  PubMed  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.

    PubMed  Google Scholar 

  • Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12.

    PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saczynski, J. S., Beiser, A., Seshadri, S., Auerbach, S., Wolf, P. A., & Au, R. (2010). Depressive symptoms and risk of dementia: The Framingham heart study. Neurology, 75(1), 35–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD, & Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129(Pt 2): 290–292.

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158–165.

    CAS  PubMed  Google Scholar 

  • Shmuel, A., & Leopold, D. A. (2008). Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Human Brain Mapping, 29(7), 751–761.

    PubMed  PubMed Central  Google Scholar 

  • Shu, H., Shi, Y., Chen, G., Wang, Z., Liu, D., Yue, C., Ward, B. D., Li, W., Xu, Z., Chen, G., Guo, Q., Xu, J., Li, S. J., & Zhang, Z. (2016). Opposite neural trajectories of apolipoprotein E 4 and 2 alleles with aging associated with different risks of Alzheimer's disease. Cerebral Cortex, 26(4), 1421–1429.

    PubMed  Google Scholar 

  • Sjobeck, M., & Englund, E. (2001). Alzheimer's disease and the cerebellum: A morphologic study on neuronal and glial changes. Dementia and Geriatric Cognitive Disorders, 12(3), 211–218.

    CAS  PubMed  Google Scholar 

  • Smith, G. S., Kramer, E., Ma, Y., Kingsley, P., Dhawan, V., Chaly, T., & Eidelberg, D. (2009). The functional neuroanatomy of geriatric depression. International Journal of Geriatric Psychiatry, 24(8), 798–808.

    PubMed  PubMed Central  Google Scholar 

  • Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., Drzezga, A., Forstl, H., Kurz, A., Zimmer, C., & Wohlschlager, A. M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18760–18765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens, D. C., & Potter, G. G. (2008). Geriatric depression and cognitive impairment. Psychological Medicine, 38(2), 163–175.

    CAS  PubMed  Google Scholar 

  • Steffens, D. C., Otey, E., Alexopoulos, G. S., Butters, M. A., Cuthbert, B., Ganguli, M., Geda, Y. E., Hendrie, H. C., Krishnan, R. R., Kumar, A., Lopez, O. L., Lyketsos, C. G., Mast, B. T., Morris, J. C., Norton, M. C., Peavy, G. M., Petersen, R. C., Reynolds, C. F., Salloway, S., Welsh-Bohmer, K. A., & Yesavage, J. (2006). Perspectives on depression, mild cognitive impairment, and cognitive decline. Archives of General Psychiatry, 63(2), 130–138.

    PubMed  Google Scholar 

  • Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010). An fMRI study of intra-individual functional topography in the human cerebellum. Behavioural Neurology, 23(1–2), 65–79.

    PubMed  PubMed Central  Google Scholar 

  • Tadayonnejad, R., & Ajilore, O. (2014). Brain network dysfunction in late-life depression: A literature review. Journal of Geriatric Psychiatry and Neurology, 27(1), 5–12.

    PubMed  Google Scholar 

  • Thal, D. R., Rub, U., et al. (2002). Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800.

    PubMed  Google Scholar 

  • Thomann, P. A., Schlafer, C., et al. (2008). The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study. Journal of Psychiatric Research, 42(14), 1198–1202.

    PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., et al. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438.

    PubMed  Google Scholar 

  • Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. The American Journal of Psychiatry, 161(11), 1957–1966.

    PubMed  Google Scholar 

  • Wang, Z., Yuan, Y., Bai, F., You, J., Li, L., & Zhang, Z. (2012). Abnormal default-mode network in angiotensin converting enzyme D allele carriers with remitted geriatric depression. Behavioural Brain Research, 230(2), 325–332.

    CAS  PubMed  Google Scholar 

  • Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., & Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage, 47(4), 1408–1416.

    PubMed  Google Scholar 

  • Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., Backman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., & Petersen, R. C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: Report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256(3), 240–246.

    CAS  PubMed  Google Scholar 

  • Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 29(2), 83–91.

    PubMed  Google Scholar 

  • Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., & Seeley, W. W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6), 1216–1227.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 81420108012, 81671046, 81871438, 81571062 and 81701675), the Disciplinary group of Psychology and Neuroscience, Xinxiang Medical University (No. 2016PNKFKT-01), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB32020200), the Key Project supported by Medical Science and technology development Foundation, Nanjing Department of Health (No. JQX18005), the Cooperative Research Project of Southeast University-Nanjing Medical University (No. 2018DN0031), and the Key Research and Development Plan (Social Development) Project of Jiangsu Province (No. BE2018608). The authors thank Xiaofa Huang and Hong Zhu for their help with the acquisition of the behavioral data and for taking care of the clinical data in this study.

Author Contributors

Author JC undertook the data analysis and wrote the manuscript. Authors HS, ZW, DL acquired the data. Authors CJ, YL, and ZJZ designed the study. Authors JC, YZ, and YL supervised the data analysis. Author YL and ZJZ provided infrastructure. All authors contributed to and have approved the final manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 81420108012, 81671046, 81871438, 81571062 and 81701675), the Disciplinary group of Psychology and Neuroscience, Xinxiang Medical University (No. 2016PNKFKT-01), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB32020200), the Key Project supported by Medical Science and technology development Foundation, Nanjing Department of Health (No. JQX18005), the Cooperative Research Project of Southeast University-Nanjing Medical University (No. 2018DN0031), and the Key Research and Development Plan (Social Development) Project of Jiangsu Province (No. BE2018608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Zhijun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Shu, H., Wang, Z. et al. Intrinsic connectivity identifies the sensory-motor network as a main cross-network between remitted late-life depression- and amnestic mild cognitive impairment-targeted networks. Brain Imaging and Behavior 14, 1130–1142 (2020). https://doi.org/10.1007/s11682-019-00098-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00098-4

Keywords

Navigation