Skip to main content
Log in

Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder

  • Review Article
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Child and adolescent psychiatric neuroimaging research typically lags behind similar advances in adult disorders. While the pediatric depression imaging literature is less developed, a recent surge in interest has created the need for a synthetic review of this work. Major findings from pediatric volumetric and functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and resting state functional connectivity studies converge to implicate a corticolimbic network of key areas that work together to mediate the task of emotion regulation. Imaging the brain of children and adolescents with unipolar depression began with volumetric studies of isolated brain regions that served to identify key prefrontal, cingulate and limbic nodes of depression-related circuitry elucidated from more recent advances in DTI and functional connectivity imaging. Systematic review of these studies preliminarily suggests developmental differences between findings in youth and adults, including prodromal neurobiological features, along with some continuity across development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MDD:

Major Depressive Disorder

fMRI:

Functional Magnetic Resonance Imaging

ACC:

Anterior Cingulate Cortex

PFC:

Prefrontal Cortex

DTI:

Diffusion Tensor Imaging

OFC:

Orbitofrontal Cortex

ODD:

Oppositional Defiant Disorder

References

  • Anand, A., Li, Y., et al. (2005a). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry, 57(10), 1079–1088.

    Article  PubMed  Google Scholar 

  • Anand, A., Li, Y., et al. (2005b). Antidepressant effect on connectivity of the mood-regulating circuit: an FMRI study. Neuropsychopharmacology, 30(7), 1334–1344.

    PubMed  CAS  Google Scholar 

  • Anand, A., Li, Y., et al. (2007). Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 274–282.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6 Pt 1), 805–821.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A. A., Gruber, S. A., et al. (1999). Functional magnetic resonance imaging of facial affect recognition in children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 38(2), 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Barnea-Goraly, N., Menon, V., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854.

    Article  PubMed  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Bellani, M., Baiano, M., et al. (2011). Brain anatomy of major depression II. Focus on amygdala. Epidemiology and Psychiatric Science, 20(1), 33–36.

    Article  CAS  Google Scholar 

  • Benes, F. M., Turtle, M., et al. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51(6), 477–484.

    PubMed  CAS  Google Scholar 

  • Biswal, B., Yetkin, F. Z., et al. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Boes, A. D., McCormick, L. M., et al. (2008). Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biological Psychiatry, 63(4), 391–397.

    Article  PubMed  Google Scholar 

  • Bremner, J. D., Narayan, M., et al. (2000). Hippocampal volume reduction in major depression. The American Journal of Psychiatry, 157(1), 115–118.

    PubMed  CAS  Google Scholar 

  • Burke, J. D., Hipwell, A. E., et al. (2010). Dimensions of oppositional defiant disorder as predictors of depression and conduct disorder in preadolescent girls. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 484–492.

    PubMed  Google Scholar 

  • Bussing, R., Mason, D. M., et al. (2010). Adolescent outcomes of childhood attention-deficit/hyperactivity disorder in a diverse community sample. Journal of the American Academy of Child and Adolescent Psychiatry, 49(6), 595–605.

    PubMed  Google Scholar 

  • Caetano, S. C., Fonseca, M., et al. (2005). Proton spectroscopy study of the left dorsolateral prefrontal cortex in pediatric depressed patients. Neuroscience Letters, 384(3), 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Caetano, S. C., Fonseca, M., et al. (2007). Medial temporal lobe abnormalities in pediatric unipolar depression. Neuroscience Letters, 427(3), 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Cascio, C. J., Gerig, G., et al. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46(2), 213–223.

    Article  PubMed  Google Scholar 

  • Casey, B. J., Jones, R. M., et al. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • CDC (2007).

  • Cerasa, A., Gioia, M. C., et al. (2008). Impact of catechol-O-methyltransferase Val(108/158) Met genotype on hippocampal and prefrontal gray matter volume. Neuroreport, 19(4), 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Chana, G., Landau, S., et al. (2003). Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biological Psychiatry, 53(12), 1086–1098.

    Article  PubMed  Google Scholar 

  • Chen, H. H., Rosenberg, D. R., et al. (2008). Orbitofrontal cortex volumes in medication naive children with major depressive disorder: a magnetic resonance imaging study. Journal of Child and Adolescent Psychopharmacology, 18(6), 551–556.

    Article  PubMed  Google Scholar 

  • Chen, M. C., Hamilton, J. P., et al. (2010). Decreased hippocampal volume in healthy girls at risk of depression. Archives of General Psychiatry, 67(3), 270–276.

    Article  PubMed  Google Scholar 

  • Conturo, T. E., Lori, N. F., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 10422–10427.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, W. E., Shanahan, L., et al. (2009). Childhood and adolescent psychiatric disorders as predictors of young adult disorders. Archives of General Psychiatry, 66(7), 764–772.

    Article  PubMed  Google Scholar 

  • Cullen, K. R., Gee, D. G., et al. (2009). A preliminary study of functional connectivity in comorbid adolescent depression. Neuroscience Letters, 460(3), 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, K. R., Klimes-Dougan, B., et al. (2010). Altered white matter microstructure in adolescents with major depression: a preliminary study. Journal of the American Academy of Child & Adolescent Psychiatry, 49(2), 173–183. e171.

    Google Scholar 

  • Cunningham, M. G., Bhattacharyya, S., et al. (2002). Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. The Journal of Comparative Neurology, 453(2), 116–130.

    Article  PubMed  Google Scholar 

  • Dekker, M. C., Ferdinand, R. F., et al. (2007). Developmental trajectories of depressive symptoms from early childhood to late adolescence: gender differences and adult outcome. Journal of Child Psychology and Psychiatry, 48(7), 657–666.

    Article  PubMed  Google Scholar 

  • Drevets, W. C., Price, J. L., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627), 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Drevets, W. C., Price, J. L., et al. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure & Function, 213(1–2), 93–118.

    Article  Google Scholar 

  • Elliott, R., Sahakian, B. J., et al. (1998). Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychological Medicine, 28(3), 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Fair, D. A., Dosenbach, N. U., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13507–13512.

    Article  PubMed  CAS  Google Scholar 

  • Fair, D. A., Cohen, A. L., et al. (2008). The maturing architecture of the brain’s default network. 105.

  • Fallucca, E., MacMaster, F. P., et al. (2011). Distinguishing between major depressive disorder and obsessive-compulsive disorder in children by measuring regional cortical thickness. Archives of General Psychiatry, 68(5), 527–533.

    Article  PubMed  Google Scholar 

  • Farchione, T. R., Moore, G. J., et al. (2002). Proton magnetic resonance spectroscopic imaging in pediatric major depression. Biological Psychiatry, 52(2), 86–92.

    Article  PubMed  Google Scholar 

  • Fitzgerald, P. B., Oxley, T. J., et al. (2006). An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression. Psychiatry Research, 148(1), 33–45.

    Article  PubMed  Google Scholar 

  • Forbes, E. E., Christopher May, J., et al. (2006). Reward-related decision-making in pediatric major depressive disorder: an fMRI study. J Child Psychol Psychiatry, 47(10), 1031–1040.

    Article  PubMed  Google Scholar 

  • Forbes, E. E., Shaw, D. S., et al. (2007). Alterations in reward-related decision making in boys with recent and future depression. Biological Psychiatry, 61(5), 633–639.

    Article  PubMed  Google Scholar 

  • Forbes, E. E., Hariri, A. R., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. The American Journal of Psychiatry, 166(1), 64–73.

    Article  PubMed  Google Scholar 

  • Fortier, E., Noreau, A., et al. (2010). Early impact of 5-HTTLPR polymorphism on the neural correlates of sadness. Neuroscience Letters, 485(3), 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J., Frith, C. D., et al. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13(1), 5–14.

    Article  PubMed  CAS  Google Scholar 

  • Frodl, T., Meisenzahl, E. M., et al. (2003). Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry, 53(4), 338–344.

    Article  PubMed  Google Scholar 

  • Fu, C. H., Williams, S. C., et al. (2004). Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Archives of General Psychiatry, 61(9), 877–889.

    Article  PubMed  Google Scholar 

  • Fusar-Poli, P., Placentino, A., et al. (2009). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry & Neuroscience, 34(6), 418–432.

    Google Scholar 

  • Gabbay, V., Hess, D. A., et al. (2007). Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. The American Journal of Psychiatry, 164(12), 1881–1889.

    Article  PubMed  Google Scholar 

  • Gabbay, V., Buchholz, L., & Gonen, O. (2008 ). The neurochemistry of pediatric major depressive disorder. What do we know so far? Psychiatric Times: 26–34.

  • Gaffrey, M. S., Luby, J. L., et al. (2010). Subgenual cingulate connectivity in children with a history of preschool-depression. Neuroreport, 21(18), 1182–1188.

    Article  PubMed  Google Scholar 

  • Gallo, V., & Ghiani, C. A. (2000). Glutamate receptors in glia: new cells, new inputs and new functions. Trends in Pharmacological Sciences, 21(7), 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Giedd, J. N., Snell, J. W., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6(4), 551–560.

    Article  PubMed  CAS  Google Scholar 

  • Giedd, J. N., Vaituzis, A. C., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. The Journal of Comparative Neurology, 366(2), 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Giedd, J. N., Blumenthal, J., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Hazlett, E. A., et al. (2010). Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression. Journal of Psychiatric Research.

  • Gotlib, I. H., Hamilton, J. P., et al. (2010). Neural processing of reward and loss in girls at risk for major depression. Archives of General Psychiatry, 67(4), 380–387.

    Article  PubMed  Google Scholar 

  • Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–430.

    Article  PubMed  Google Scholar 

  • Greicius, M. D., Flores, B. H., et al. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.

    Article  PubMed  Google Scholar 

  • Halari, R., Simic, M., et al. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naive adolescents with depression compared to controls. Journal of Child Psychology and Psychiatry, 50(3), 307–316.

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., Siemer, M., et al. (2008). Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry.

  • Hamilton, J. P., Chen, G., et al. (2010). Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry.

  • Hariri, A. R., Drabant, E. M., et al. (2006). Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59(10), 888–897.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., Fan, X., et al. (2011). White matter changes in healthy adolescents at familial risk for unipolar depression: a diffusion tensor imaging study. Neuropsychopharmacology, 36(3), 684–691.

    Article  PubMed  Google Scholar 

  • Jacobs, B. L., van Praag, H., et al. (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Molecular Psychiatry, 5(3), 262–269.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, A. M. (2004). Structural MRI changes of the brain in depression. Clinical EEG and neuroscience: official journal of the EEG and Clinical Neuroscience Society, 35(1), 46–52.

    Google Scholar 

  • Keedwell, P. A., Andrew, C., et al. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58(11), 843–853.

    Article  PubMed  Google Scholar 

  • Kelly, A. M., Di Martino, A., et al. (2008). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex.

  • Kelly, A. M., Di Martino, A., et al. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640–657.

    Article  PubMed  Google Scholar 

  • Kempton, M. J., Salvador, Z., et al. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690.

    Article  PubMed  Google Scholar 

  • Kim, J. E., Lyoo, I. K., et al. (2010). Laterobasal amygdalar enlargement in 6- to 7-year-old children with autism spectrum disorder. Archives of General Psychiatry, 67(11), 1187–1197.

    Article  PubMed  Google Scholar 

  • Kober, H., Barrett, L. F., et al. (2008). Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage, 42(2), 998–1031.

    Article  PubMed  Google Scholar 

  • Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201(2), 239–243.

    Article  PubMed  Google Scholar 

  • Kusumakar, V., MacMaster, F. P., et al. (2001). Left medial temporal cytosolic choline in early onset depression. Canadian Journal of Psychiatry, 46(10), 959–964.

    CAS  Google Scholar 

  • Lau, J. Y., Goldman, D., et al. (2010). BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. NeuroImage, 53(3), 952–961.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, N. S., Williams, A. M., et al. (2004). Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biological Psychiatry, 55(6), 578–587.

    Article  PubMed  Google Scholar 

  • Liu, Z., Xu, C., et al. (2010). Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Research, 182(3), 211–215.

    Article  PubMed  Google Scholar 

  • MacMaster, F. P., & Kusumakar, V. (2004a). Hippocampal volume in early onset depression. BMC Medicine, 2, 2.

    Article  PubMed  Google Scholar 

  • MacMaster, F. P., & Kusumakar, V. (2004b). MRI study of the pituitary gland in adolescent depression. Journal of Psychiatric Research, 38(3), 231–236.

    Article  PubMed  Google Scholar 

  • MacMaster, F. P., Russell, A., et al. (2006). Pituitary volume in treatment-naive pediatric major depressive disorder. Biological Psychiatry, 60(8), 862–866.

    Article  PubMed  Google Scholar 

  • MacMaster, F. P., Mirza, Y., et al. (2008). Amygdala and hippocampal volumes in familial early onset major depressive disorder. Biological Psychiatry, 63(4), 385–390.

    Article  PubMed  Google Scholar 

  • MacMaster, F. P., Moore, G. J., et al. (2008). Medial temporal N-acetyl-aspartate in pediatric major depression. Psychiatry Research, 164(1), 86–89.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan, S., Szeszko, P. R., et al. (2003). Increased amygdala: hippocampal volume ratios associated with severity of anxiety in pediatric major depression. Journal of Child and Adolescent Psychopharmacology, 13(1), 65–73.

    Article  PubMed  Google Scholar 

  • MacQueen, G. M., Campbell, S., et al. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1387–1392.

    Article  PubMed  CAS  Google Scholar 

  • Mannie, Z. N., Norbury, R., et al. (2008). Affective modulation of anterior cingulate cortex in young people at increased familial risk of depression. The British Journal of Psychiatry, 192(5), 356–361.

    Article  PubMed  Google Scholar 

  • Mason, W. A., Kosterman, R., et al. (2004). Predicting depression, social phobia, and violence in early adulthood from childhood behavior problems. Journal of the American Academy of Child and Adolescent Psychiatry, 43(3), 307–315.

    Article  PubMed  Google Scholar 

  • Matsuo, K., Rosenberg, D. R., et al. (2008). Striatal volume abnormalities in treatment-naive patients diagnosed with pediatric major depressive disorder. Journal of Child and Adolescent Psychopharmacology, 18(2), 121–131.

    Article  PubMed  Google Scholar 

  • Mayberg, H. S., Brannan, S. K., et al. (1997). Cingulate function in depression: a potential predictor of treatment response. Neuroreport, 8(4), 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  • Mazza, J. J., Fleming, C. B., et al. (2010). Identifying trajectories of adolescents’ depressive phenomena: an examination of early risk factors. Journal of Youth and Adolescence, 39(6), 579–593.

    Article  PubMed  Google Scholar 

  • Mechelli, A., Tognin, S., et al. (2009). Genetic vulnerability to affective psychopathology in childhood: a combined voxel-based morphometry and functional magnetic resonance imaging study. Biological Psychiatry, 66(3), 231–237.

    Article  PubMed  Google Scholar 

  • Mervaala, E., Fohr, J., et al. (2000). Quantitative MRI of the hippocampus and amygdala in severe depression. Psychological Medicine, 30(1), 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Mirza, Y., Tang, J., et al. (2004). Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. Journal of the American Academy of Child and Adolescent Psychiatry, 43(3), 341–348.

    Article  PubMed  Google Scholar 

  • Monk, C. S., Klein, R. G., et al. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. The American Journal of Psychiatry, 165(1), 90–98.

    Article  PubMed  Google Scholar 

  • Muetzel, R. L., Collins, P. F., et al. (2008). The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. NeuroImage, 39(4), 1918–1925.

    Article  PubMed  Google Scholar 

  • Nolan, C. L., Moore, G. J., et al. (2002). Prefrontal cortical volume in childhood-onset major depression: preliminary findings. Archives of General Psychiatry, 59(2), 173–179.

    Article  PubMed  Google Scholar 

  • Olvera, R. L., Caetano, S. C., et al. (2010). Reduced medial prefrontal N-acetyl-aspartate levels in pediatric major depressive disorder: a multi-voxel in vivo(1)H spectroscopy study. Psychiatry Research, 184(2), 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. S., Warner, V., et al. (2009). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6273–6278.

    Article  PubMed  CAS  Google Scholar 

  • Pine, D. S., Cohen, P., et al. (1998). The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Archives of General Psychiatry, 55(1), 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 36(1), 183–206.

    Article  Google Scholar 

  • Pizzagalli, D. A., Oakes, T. R., et al. (2004). Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Molecular Psychiatry, 9(4), 325, 393–405.

    Google Scholar 

  • Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 192–216.

    Article  PubMed  Google Scholar 

  • Rao, U., Chen, L. A., et al. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry, 67(4), 357–364.

    Article  PubMed  Google Scholar 

  • Roberson-Nay, R., McClure, E. B., et al. (2006). Increased amygdala activity during successful memory encoding in adolescent major depressive disorder: an FMRI study. Biological Psychiatry, 60(9), 966–973.

    Article  PubMed  Google Scholar 

  • Rosenberg, D. R., Mirza, Y., et al. (2004). Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. Journal of the American Academy of Child and Adolescent Psychiatry, 43(9), 1146–1153.

    Article  PubMed  Google Scholar 

  • Rosenberg, D. R., Macmaster, F. P., et al. (2005). Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biological Psychiatry, 58(9), 700–704.

    Article  PubMed  CAS  Google Scholar 

  • Rosso, I. M., Cintron, C. M., et al. (2005). Amygdala and hippocampus volumes in pediatric major depression. Biological Psychiatry, 57(1), 21–26.

    Article  PubMed  Google Scholar 

  • Sapolsky, R. M., Uno, H., et al. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 10(9), 2897–2902.

    CAS  Google Scholar 

  • Savitz, J. B., & Drevets, W. C. (2009). Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience.

  • Schmidt-Wilcke, T., Luerding, R., et al. (2007). Striatal grey matter increase in patients suffering from fibromyalgia–a voxel-based morphometry study. Pain, 132(Suppl 1), S109–116.

    Article  PubMed  Google Scholar 

  • Sexton, C. E., Mackay, C. E., et al. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry.

  • Sheline, Y. I. (2000). 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biological Psychiatry, 48(8), 791–800.

    Article  PubMed  CAS  Google Scholar 

  • Sheline, Y. I., Gado, M. H., et al. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport, 9(9), 2023–2028.

    Article  PubMed  CAS  Google Scholar 

  • Sheline, Y. I., Barch, D. M., et al. (2001). Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biological Psychiatry, 50(9), 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Sheline, Y. I., Price, J. L., et al. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. A., Russell, A., et al. (2003). Increased medial thalamic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biological Psychiatry, 54(12), 1399–1405.

    Article  PubMed  CAS  Google Scholar 

  • Sourander, A., Jensen, P., et al. (2007). Who is at greatest risk of adverse long-term outcomes? The Finnish from a boy to a man study. Journal of the American Academy of Child and Adolescent Psychiatry, 46(9), 1148–1161.

    Article  PubMed  Google Scholar 

  • Spoletini, I., Piras, F., et al. (2011). Suicidal attempts and increased right amygdala volume in schizophrenia. Schizophrenia Research, 125(1), 30–40.

    Article  PubMed  Google Scholar 

  • Steffens, D. C., Byrum, C. E., et al. (2000). Hippocampal volume in geriatric depression. Biological Psychiatry, 48(4), 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Steingard, R. J., Renshaw, P. F., et al. (1996). Structural abnormalities in brain magnetic resonance images of depressed children. Journal of the American Academy of Child and Adolescent Psychiatry, 35(3), 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Steingard, R. J., Yurgelun-Todd, D. A., et al. (2000). Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by in vivo proton magnetic resonance spectroscopy. Biological Psychiatry, 48(11), 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Steingard, R. J., Renshaw, P. F., et al. (2002). Smaller frontal lobe white matter volumes in depressed adolescents. Biological Psychiatry, 52(5), 413–417.

    Article  PubMed  Google Scholar 

  • Szeszko, P. R., MacMillan, S., et al. (2004). Amygdala volume reductions in pediatric patients with obsessive-compulsive disorder treated with paroxetine: preliminary findings. Neuropsychopharmacology, 29(4), 826–832.

    Article  PubMed  CAS  Google Scholar 

  • Takano, K., Utsunomiya, H., et al. (1999). Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR. American Journal of Neuroradiology, 20(2), 312–315.

    PubMed  CAS  Google Scholar 

  • Thomas, K. M., Drevets, W. C., et al. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58(11), 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • van Eijndhoven, P., van Wingen, G., et al. (2009). Amygdala volume marks the acute state in the early course of depression. Biological Psychiatry, 65(9), 812–818.

    Article  PubMed  Google Scholar 

  • Veer, I. M., Beckmann, C. F., et al. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4.

  • Videbech, P. (2000). PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatrica Scandinavica, 101(1), 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, P. J., Bush, G., et al. (1998). The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biological Psychiatry, 44(12), 1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, P. J., Shin, L. M., et al. (2002). Functional neuroimaging studies of the amygdala in depression. Seminars in Clinical Neuropsychiatry, 7(4), 234–242.

    Article  PubMed  Google Scholar 

  • Yao, Z., Wang, L., et al. (2009). Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. Journal of Affective Disorders, 115(3), 430–438.

    Article  PubMed  Google Scholar 

  • Yap, M. B., Whittle, S., et al. (2008). Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Archives of General Psychiatry, 65(12), 1377–1385.

    Article  PubMed  Google Scholar 

  • Yildiz-Yesiloglu, A., & Ankerst, D. P. (2006). Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Research, 147(1), 1–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Hulvershorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulvershorn, L.A., Cullen, K. & Anand, A. Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging and Behavior 5, 307–328 (2011). https://doi.org/10.1007/s11682-011-9134-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9134-3

Keywords

Navigation