Skip to main content
Log in

MTHFR 677C>T effects on anterior cingulate structure and function during response monitoring in schizophrenia: a preliminary study

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Patients with schizophrenia exhibit deficient response monitoring as indexed by blunted activation of the dorsal anterior cingulate cortex (dACC) and functionally related regions during error commission. This pattern may reflect heritable alterations of dACC function. We examined whether the hypofunctional 677C>T variant in MTHFR, a candidate schizophrenia risk gene, contributed to our previous findings of blunted error-related dACC activation and reduced microstructural integrity of dACC white matter. Eighteen medicated outpatients with schizophrenia underwent diffusion tensor imaging and performed an antisaccade paradigm during functional magnetic resonance imaging (fMRI). T allele carriers exhibited significantly less error-related activation than C/C patients in bilateral dACC and substantia nigra, regions that are thought to mediate dopamine-dependent error-based reinforcement learning. T carrier patients also showed significantly lower fractional anisotropy in bilateral dACC. These findings suggest that the MTHFR 677T allele blunts response monitoring in schizophrenia, presumably via effects on dopamine signaling and dACC white matter microstructural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agartz, I., Andersson, J. L., & Skare, S. (2001). Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. NeuroReport, 12(10), 2251–2254.

    Article  CAS  PubMed  Google Scholar 

  • Albrecht, B., Brandeis, D., Uebel, H., Heinrich, H., Mueller, U. C., Hasselhorn, M., et al. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biological Psychiatry, 64(7), 615–625.

    Article  PubMed  Google Scholar 

  • Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J. P., Kavvoura, F. K., Khoury, M. J., et al. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature Genetics, 40(7), 827–834.

    Article  CAS  PubMed  Google Scholar 

  • Anokhin, A. P., Golosheykin, S., & Heath, A. C. (2008). Heritability of frontal brain function related to action monitoring. Psychophysiology, 45(4), 524–534.

    Article  PubMed  Google Scholar 

  • Ardekani, B. A., Nierenberg, J., Hoptman, M. J., Javitt, D. C., & Lim, K. O. (2003). MRI study of white matter diffusion anisotropy in schizophrenia. NeuroReport, 14(16), 2025–2029.

    Article  PubMed  Google Scholar 

  • Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, L., Kanoff, R., Charnas, L., Krenzel, C., Berry, S. A., & Schimmenti, L. A. (2008). Severe methylenetetrahydrofolate reductase (MTHFR) deficiency: a case report of nonclassical homocystinuria. Journal of Child Neurology, 23(7), 823–828.

    Article  PubMed  Google Scholar 

  • Blair, J. R., & Spreen, O. (1989). Predicting premorbid IQ: a revision of the National Adult Reading Test. Clinical Neuropsychologist, 3, 129–136.

    Article  Google Scholar 

  • Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118–1121.

    Article  CAS  PubMed  Google Scholar 

  • Burns, J., Job, D., Bastin, M. E., Whalley, H., Macgillivray, T., Johnstone, E. C., et al. (2003). Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. The British Journal of Psychiatry, 182, 439–443.

    Article  CAS  PubMed  Google Scholar 

  • Burock, M. A., & Dale, A. M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Human Brain Mapping, 11(4), 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective & Behavioral Neuroscience, 7(4), 367–379.

    Article  Google Scholar 

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747–749.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C. S., MacDonald, A. W., 3rd, Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. The American Journal of Psychiatry, 158(9), 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt 1), 279–306.

    Article  PubMed  Google Scholar 

  • Fallgatter, A. J., Herrmann, M. J., Roemmler, J., Ehlis, A. C., Wagener, A., Heidrich, A., et al. (2004). Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology, 29(8), 1506–1511.

    Article  CAS  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. New York: Biometrics Research, The New York State Psychiatric Institute.

    Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    Article  PubMed  Google Scholar 

  • Fitzgerald, K. D., Perkins, S. C., Angstadt, M., Johnson, T., Stern, E. R., Welsh, R. C., et al. (2009). The development of performance-monitoring function in the posterior medial frontal cortex. Neuroimage, 49(4), 3463–3473.

    Article  PubMed  Google Scholar 

  • Foong, J., Symms, M. R., Barker, G. J., Maier, M., Miller, D. H., & Ron, M. A. (2002). Investigating regional white matter in schizophrenia using diffusion tensor imaging. NeuroReport, 13(3), 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Fornito, A., Yucel, M., Dean, B., Wood, S. J., & Pantelis, C. (2009). Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophrenia Bulletin, 35(5), 973–993.

    Article  PubMed  Google Scholar 

  • Gilbody, S., Lewis, S., & Lightfoot, T. (2007). Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. American Journal of Epidemiology, 165(1), 1–13.

    Article  PubMed  Google Scholar 

  • Gooding, D. C., & Basso, M. A. (2008). The tell-tale tasks: a review of saccadic research in psychiatric patient populations. Brain and Cognition, 68(3), 371–390.

    Article  PubMed  Google Scholar 

  • Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40(6), 895–903.

    Article  PubMed  Google Scholar 

  • Hao, Y., Liu, Z., Jiang, T., Gong, G., Liu, H., Tan, L., et al. (2006). White matter integrity of the whole brain is disrupted in first-episode schizophrenia. NeuroReport, 17(1), 23–26.

    Article  PubMed  Google Scholar 

  • Ho. B. C., Wassink, T. H., O’Leary, D. S., Sheffield, V. C., & Andreasen, N. C. (2005). Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Molecular Psychiatry, 10(3):229, 287–298.

    Google Scholar 

  • Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.

    Article  PubMed  Google Scholar 

  • Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14(18), 2481–2484.

    Article  PubMed  Google Scholar 

  • Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R. B., Coles, M. G., et al. (2004). Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nature Neuroscience, 7(5), 497–498.

    Article  CAS  PubMed  Google Scholar 

  • Hong, E. D., Taylor, W. D., McQuoid, D. R., Potter, G. G., Payne, M. E., Ashley-Koch, A., et al. (2009). Influence of the MTHFR C677T polymorphism on magnetic resonance imaging hyperintensity volume and cognition in geriatric depression. The American Journal of Geriatric Psychiatry, 17(10), 847–855.

    Article  PubMed  Google Scholar 

  • Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261–276.

    CAS  PubMed  Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Johnson, M. K., Stenger, V. A., Aizenstein, H., et al. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. The American Journal of Psychiatry, 162(10), 1833–1839.

    Article  PubMed  Google Scholar 

  • Klein, T. A., Neumann, J., Reuter, M., Hennig, J., von Cramon, D. Y., & Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science, 318(5856), 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  • Kohara, K., Fujisawa, M., Ando, F., Tabara, Y., Niino, N., Miki, T., et al. (2003). MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: The NILS-LSA Study. Stroke, 34(5), 1130–1135.

    Article  PubMed  Google Scholar 

  • Kramer, U. M., Cunillera, T., Camara, E., Marco-Pallares, J., Cucurell, D., Nager, W., et al. (2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. The Journal of Neuroscience, 27(51), 14190–14198.

    Article  PubMed  Google Scholar 

  • Kubicki, M., Westin, C. F., Nestor, P. G., Wible, C. G., Frumin, M., Maier, S. E., et al. (2003). Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54(11), 1171–1180.

    Article  PubMed  Google Scholar 

  • Laakso, A., Pohjalainen, T., Bergman, J., Kajander, J., Haaparanta, M., Solin, O., et al. (2005). The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects. Pharmacogenetics and Genomics, 15(6), 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Laurens, K. R., Ngan, E. T., Bates, A. T., Kiehl, K. A., & Liddle, P. F. (2003). Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain, 126(Pt 3), 610–622.

    Article  PubMed  Google Scholar 

  • Levy, D. L., Mendell, N. R., LaVancher, C. A., Brownstein, J., Krastoshevsky, O., Teraspulsky, L., et al. (1998). Disinhibition in antisaccade performance in schizophrenia. In M. F. Lenzenweger & R. H. Dworkin (Eds.), Origins and development of schizophrenia (pp. 185–210). Washington DC: American Psychological Association.

    Chapter  Google Scholar 

  • Li, C. S., Huang, C., Yan, P., Paliwal, P., Constable, R. T., & Sinha, R. (2008). Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20(6), 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  • Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14(1), 47–53.

    Article  PubMed  Google Scholar 

  • Manoach, D. S., Ketwaroo, G. A., Polli, F. E., Thakkar, K. N., Barton, J. J., Goff, D. C., et al. (2007). Reduced microstructural integrity of the white matter underlying anterior cingulate cortex is associated with increased saccadic latency in schizophrenia. Neuroimage, 37(2), 599–610.

    Article  PubMed  Google Scholar 

  • Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. Journal of Abnormal Psychology, 111(1), 22–41.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Polli, F. E., Barton, J. J., Cain, M. S., Thakkar, K. N., Rauch, S. L., & Manoach, D. S. (2005). Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15700–15705.

    Article  CAS  PubMed  Google Scholar 

  • Polli, F. E., Barton, J. J., Thakkar, K. N., Greve, D. N., Goff, D. C., Rauch, S. L., et al. (2008). Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia. Brain, 131(Pt 4), 971–986.

    Article  PubMed  Google Scholar 

  • Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49(1), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Roffman, J. L., Weiss, A. P., Deckersbach, T., Freudenreich, O., Henderson, D. C., Purcell, S., et al. (2007). Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophrenia Research, 92(1–3), 181–188.

    Article  PubMed  Google Scholar 

  • Roffman, J. L., Gollub, R. L., Calhoun, V. D., Wassink, T. H., Weiss, A. P., Ho, B. C., et al. (2008). MTHFR 677C-->T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val-->Met. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17573–17578.

    Article  CAS  PubMed  Google Scholar 

  • Roffman, J. L., Weiss, A. P., Deckersbach, T., Freudenreich, O., Henderson, D. C., Wong, D. H., et al. (2008). Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147B(6), 990–995.

    Article  CAS  Google Scholar 

  • Roffman, J. L., Weiss, A. P., Purcell, S., Caffalette, C. A., Freudenreich, O., Henderson, D. C., et al. (2008). Contribution of methylenetetrahyrdofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biological Psychiatry, 63(1), 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Scheffers, M. K., & Coles, M. G. (2000). Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Wang, F., Cui, L., Breeze, J., Du, X., Wang, X., et al. (2003). Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. NeuroReport, 14(14), 1833–1836.

    Article  PubMed  Google Scholar 

  • Tallur, K. K., Johnson, D. A., Kirk, J. M., Sandercock, P. A., & Minns, R. A. (2005). Folate-induced reversal of leukoencephalopathy and intellectual decline in methylene-tetrahydrofolate reductase deficiency: variable response in siblings. Developmental Medicine and Child Neurology, 47(1), 53–56.

    Article  PubMed  Google Scholar 

  • Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: recent findings and theoretical perspectives. The Neuroscientist, 13(2), 160–172.

    Article  PubMed  Google Scholar 

  • Vares M, Saetre P, Deng H, Cai G, Liu X, Hansen T, et al. (2009). Association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age of onset in schizophrenia. Am J Med Genet B Neuropsychiatr Genet.

  • Walk, D., Kang, S. S., & Horwitz, A. (1994). Intermittent encephalopathy, reversible nerve conduction slowing, and MRI evidence of cerebral white matter disease in methylenetetrahydrofolate reductase deficiency. Neurology, 44(2), 344–347.

    CAS  PubMed  Google Scholar 

  • Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62(7), 756–764.

    Article  PubMed  Google Scholar 

  • Wang, F., Sun, Z., Cui, L., Du, X., Wang, X., Zhang, H., et al. (2004). Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. The American Journal of Psychiatry, 161(3), 573–575.

    Article  PubMed  Google Scholar 

  • White, K., & Ashton, R. (1976). Handedness assessment inventory. Neuropsychologia, 14, 261–264.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. The Journal of Clinical Psychiatry, 64(6), 663–667.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and conflict of interest

This work was supported by the National Institute for Mental Health (R01 MH67720) and NARSAD Independent Investigator Award (to DSM); the Charles A. King Trust, Bank of America, Co-Trustee and the Bushrod H. Campbell and Adah F. Hall Charity Fund, Alden Trust, and Howard Hughes Medical Institute Physician Scientist Early Career Award (to JLR); the Mental Illness Neuroscience Discovery (MIND) Institute (DOE DE-FG02-99ER62764); and the National Center for Research Resources (P41RR14075). We thank Doug Greve for helpful discussions regarding the manuscript. None of the authors report any conflicts of interest. In memory of Jesse Friedman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Roffman.

Additional information

Jesse S. Friedman: Deceased

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Schematic depiction of the saccadic paradigm with idealized eye position traces. Saccadic trials lasted 4000 ms and began with an instructional cue at the center of the screen. For half of the participants, orange concentric rings were the cue for a prosaccade trial (a) and a blue “X” was the cue for an antisaccade trial (b). These cues were reversed for the rest of the participants. The cue was flanked horizontally by two small green squares of 0.2° width that marked the potential locations of stimulus appearance, 10° left and right of center. These squares remained on the screen for the duration of each run. (c) At 300 ms, the instructional cue was replaced by a green fixation ring at the center of the screen, of 0.4° diameter and luminance of 20 cd/m2. After 1700 ms, the ring shifted to one of the two target locations, right or left, with equal probability. This was the stimulus to which the participant responded by either making a saccade to it (prosaccade) or to the square on the opposite side (antisaccade). The green ring remained in the peripheral location for 1000 ms and then returned to the center, where participants were also to return their gaze for 1000 ms before the start of the next trial. Fixation intervals were simply a continuation of the fixation display that constituted the final second of the previous saccadic trial. (JPEG 192 kb)

Supplemental Figure 2

Statistical maps of MTHFR 677C>T genotype effects in the contrast of antisaccade correct versus fixation at 4 s displayed on the inflated medial and lateral cortical surfaces. The dACC is outlined in green. (JPEG 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roffman, J.L., Brohawn, D.G., Friedman, J.S. et al. MTHFR 677C>T effects on anterior cingulate structure and function during response monitoring in schizophrenia: a preliminary study. Brain Imaging and Behavior 5, 65–75 (2011). https://doi.org/10.1007/s11682-010-9111-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-010-9111-2

Keywords

Navigation