Skip to main content
Log in

Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Tachi-branco (Tachigali vulgaris, L.F.Gomes da Silva & H.C.Lima) is a leguminous tree species native to the Amazon rainforest that has drawn attention for its remarkably fast growth, a required trait for biomass/bioenergy plantations. In evaluations of biomass production and wood properties of T. vulgaris planted in homogeneous plantations at different spacings in the Amazonian state of Pará, Brazil, biomass of 7-year-old trees was quantified for individual trees and the entire population. Wood was also sampled to assess properties relevant to bioenergy applications. The choice for spacing dimension for planting nonclonal T. vulgaris should consider whether the priority is greater productivity per tree, achieved with greater spacings (9.0 m2 and 12.0 m2), or productivity per area, achieved with closer spacings (6.0 m2 and 7.5 m2). Genetic variability of the T. vulgaris seed stand and/or high heritability of wood traits overcame the effect of different spacing on all morphological, physical, chemical and energetic properties of T. vulgaris wood. This species has moderate basic density when cultivated at spacings larger than 6 m2 and net heating value above 7.95 MJ/kg, which is suitable for bioenergy purposes. The high variation in wood properties within tree spacing is strongly indicative of great potential for genetic breeding. The fast growth and the suitable moderate wood basic density confirm the outstanding potential of homogeneous plantations of T. vulgaris for providing wood for bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • ABNT (The Brazilian Association of Technical Standards) (2003) NBR 11941–Wood: determination of basic density. ABNT, Rio de Janeiro

    Google Scholar 

  • Agbro EB, Ogie NA (2012) A comprehensive review of biomass resources and biofuel production potential in Nigeria. Res J Eng Appl Sci 1(3):149–155

    Google Scholar 

  • ASTM (American Society for Testing Materials) (2007) D1762-84 - Standard test method for chemical analysis of wood charcoal. ASTM, Philadelphia

    Google Scholar 

  • Barros SVS, Nascimento CC, Azevedo CP (2012) Energetic characterization of native and exotic forest species cultivated at Amazonas. Floresta 42(4):725–732

    Article  Google Scholar 

  • Bentancor L, Hernández J, del Pino A, Califra A, Resquín F, González-Barrios P (2019) Evaluation of the biomass production, energy yield and nutrient removal of Eucalyptus dunnii Maiden grown in short rotation coppice under two initial planting densities and harvest systems. Biomass Bioenergy 122:165–174

    Article  Google Scholar 

  • Berger R, Schneider PR, Finger CAG, Haselein CR (2002) Growth rate of Eucalyptus saligna Smith affected by spacing and fertilization. Ciênc Florest 12(2):75–87

    Article  Google Scholar 

  • Bilgic E, Yaman S, Haykiri-Acma H, Kucukbayrak S (2016) Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass? Biores Technol 200:201–207

    Article  CAS  Google Scholar 

  • Binkley D, Campoe OC, Alvares C, Carneiro RL, Cegatta I, Stape JL (2017) The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For Ecol Manag 405(1):271–283

    Article  Google Scholar 

  • Brand MA (2010) Energia de biomassa florestal. Interciência, Rio de Janeiro, p 131

    Google Scholar 

  • Brand MA, Muñiz GIB, Quirino WF, Brito JO (2011) Storage as a tool to improve wood fuel quality. Biomass Bioenergy 35(7):2581–2588

    Article  CAS  Google Scholar 

  • Bustamante-García V, Carrillo-Parra A, González-Rodríguez H, Ramírez-Lozano RG, Corral-Rivas JJ, Garza-Ocañas F (2013) Evaluation of a charcoal production process from forest residues of Quercus sideroxyla Humb., & Bonpl. in a Brazilian beehive kiln. Ind Crops Prod 42:169–174

    Article  CAS  Google Scholar 

  • Carpanezzi AA, Marques LCT, Kanashiro M (1983) Aspectos ecológicos e silviculturais de taxi-branco-da-terra-firme (Sclerolobium paniculatum Vogel). https://www.researchgate.net/publication/242204833. Accessed 31 Oct 2018

  • Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche JP (2015) Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Res 60:1–10

    Google Scholar 

  • Choi HL, Sudiarto SIA, Renggaman A (2014) Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 116(15):772–780

    Article  CAS  Google Scholar 

  • Committee IAWA (1989) IAWA list of microscopic features for hardwood identification. In: Wheeler EA, Baas P, Gasson P (eds) IAWA Bulletin. State University of New York, New York, pp 219–332

    Google Scholar 

  • Costa KCP, Lima RMB, Ferreira MJ (2015) Biomass and energy yield of leguminous trees cultivated in Amazonas. Floresta 4(45):705–712

    Article  Google Scholar 

  • Csanády E, Magoss E, Tolvaj L (2015) Quality of machined wood surfaces. Springer, New York, p 257

    Book  Google Scholar 

  • Dacres OD, Tong S, Li X, Zhu X, Edreis EMA, Liu H, Luo G, Worasuwannarak N, Kerdsuwan S, Fungtammasan B, Yao H (2019) Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Convers Manag 182(15):117–125

    Article  CAS  Google Scholar 

  • de Paula YL, Melo R da S, da Silva EDG, Alves AR, Boschetti WTN, de Holanda AC, Alves RC (2018) Wood characterization of Poincianella pyramidalis (TUL.) L.P. Queiroz. Cad Ciênc Tecnol 35(2):193–206

  • de Souza JC, Pedrozo CA, da Silva K, Oliveira A, Ximendes V, Alencar AMDS (2019) Environments for seedling production and nodulation by rhizobia in Tachigali vulgaris. Ciênc Florest 29(1):116–129

    Article  Google Scholar 

  • Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20(1):105–111

    Article  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230

    Article  CAS  Google Scholar 

  • Demolinari RA, Soares CPB, Leite HG, Souza AL (2007) Growth of unthinned clonal eucalyptus plantations in the region of Monte Dourado (PA). Rev Árvore 38(3):503–512

    Article  Google Scholar 

  • Eloy E, Caron BO, Silva DA, Souza VQ, Trevisa R, Behling A, Elli EF (2015) Energy productivity of forest species in short rotation plantings. Ciênc Rural 45(8):1424–1431

    Article  Google Scholar 

  • Eufrade-Junior HJ, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW (2016) Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy 90:15–21

    Article  Google Scholar 

  • Eufrade-Junior HJ, Guerra SPS, Sansígolo CA, Ballarin AW (2018) Management of Eucalyptus short-rotation coppice and its outcome on fuel quality. Renew Energy 121:309–314

    Article  Google Scholar 

  • Farias J, Marimon BS, Silva LCR, Petter FA, Andrade FR, Morandi PS, Marimon-Junior BH (2016) Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla x Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For Ecol Manag 368(9):173–182

    Article  Google Scholar 

  • Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75(11):603–608

    Article  CAS  Google Scholar 

  • Fernandes C, Gaspar MJ, Pires J, Silva ME, Carvalho A, Brito JL, Lousada JL (2017) Within and between-tree variation of wood density components in Pinus sylvestris at five sites in Portugal. Eur J Wood Wood Prod 75:511–526

    Article  CAS  Google Scholar 

  • García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Biores Technol 103(1):249–258

    Article  CAS  Google Scholar 

  • García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Biores Technol 139(1):1–4

    Article  CAS  Google Scholar 

  • García R, Pizarro C, Lavín AG, Bueno J (2014) Spanish biofuels heating value estimation. Part I: Ultimate analysis data. Fuel 117:1130–1138

    Article  CAS  Google Scholar 

  • Gil MV, González-Vázquez MP, García R, Rubiera F, Pevida C (2019) Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Convers Manag 184:649–660

    Article  CAS  Google Scholar 

  • Gominho J, Pereira H (2005) The influence of tree spacing in heartwood content in Eucalyptus globulus Labill. Wood Fiber Sci 37(4):582–590

    CAS  Google Scholar 

  • Hauk S, Knoke T, Wittkopf S (2014) Economic evaluation of short rotation coppice systems for energy from biomass - a review (2014). Renew Sustain Energy Rev 29:435–448

    Article  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. Vitro Cell Dev Biol Plant 45(6):619–629

    Article  PubMed  Google Scholar 

  • Huang H, Yuan X (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80

    Article  Google Scholar 

  • Huang C, Han L, Yang Z, Liu X (2009) Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manag 29(6):1793–1797

    Article  CAS  PubMed  Google Scholar 

  • Hupa M, Karlström O, Vainio E (2016) Biomass combustion technology development—it is all about chemical details. Proc Combust Inst 36(1):113–134

    Article  CAS  Google Scholar 

  • Jiang L, Liang J, Yuan X, Li H, Li C, Xiao Z, Huang H, Zeng G (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Biores Technol 166:435–443

    Article  CAS  Google Scholar 

  • Jiang L, Yuan X, Xiao Z, Liang J, Li H, Cao L, Wang H, Chen X, Zeng G (2016) A comparative study of biomass pellet and biomass-sludge mixed pellet: energy input and pellet properties. Energy Convers Manag 126:509–515

    Article  Google Scholar 

  • Junior HJE, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW (2016) Sustainable use of Eucalyptus biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy 90(3):15–21

    Article  Google Scholar 

  • Kopp RF, Abrahamso NLP, White EH, Nowak CA, Zsuffa L, Burns KF (1996) Wood grass spacing and fertilization effects on wood biomass production by a willow clone. Biomass Bioenergy 11(6):451–457

    Article  Google Scholar 

  • Leles PSS, Machado TFF, Alonso JM, Andrade AM, Silva LL (2014) Growth and biomass of Melia azedarach L. at different spacings and technological characteristics of wood for charcoal production. Floresta e Ambiente 21(2):214–223

    Article  Google Scholar 

  • Lin CJ, Chung CH, Yang TH, Lin FC (2012) Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia gymnosperm species. Silva Fennica 46(3):415–424

    Article  Google Scholar 

  • Mahishi MR, Goswami DY (2007) Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energy 32:3831–3840

    Article  CAS  Google Scholar 

  • Malan F, Hoon M (1992) Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr For J 163:13–20

    Google Scholar 

  • Meneses VA, Trugilho PF, Calegario N, Leite HG (2015) Effect of age and site on the basic density and dry mass of wood from a clone of Eucalyptus urophylla. Sci For 43(105):101–116

    Google Scholar 

  • Moulin JC, Arantes MDC, Oliveira JGL, Campinhos E, Gomes F, Vidaurre GB (2017) Effect of Spacing, age and irrigation on the volume and basic density in Eucalyptus. Floresta e Ambiente 24(1):1–10

    Google Scholar 

  • Neto S, Reis GG, Reis MGF, Neves JCL (2003) Biomass production and distribution in Eucalyptus camaldulensis Dehn. as influenced by fertilization and spacing. Rev Árvore 27(1):15–23

    Article  Google Scholar 

  • Paula J (2003) Anatomical characterization of seven woods from Amazonia for energy and paper production. Acta Amazonica 33(2):243–262

    Article  Google Scholar 

  • Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF (2013a) Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8(3):4574–4592

    Article  Google Scholar 

  • Pereira BLC, Oliveira AC, Carvalho AMML, Carneiro ACO, Vital BR, Santos LC (2013b) Correlations among the heart/sapwood ratio of eucalyptus wood, yield and charcoal properties. Sci For 41(98):217–225

    Google Scholar 

  • Pereira DTO, Nobre JRC, Bianchi ML (2019) Energy quality of waste from Brazil nut (Bertholletia excelsa), in the state of Pará. Braz J Dev 5(4):3258–3265

    Google Scholar 

  • Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For Ecol Manag 175:195–204

    Article  Google Scholar 

  • Qiu Q, Yun G, Zuo S, Yan J, Hua L, Ren Y, Tang J, Li Y, Chen Q (2018) Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. J For Res 5(29):1263–1276

    Article  CAS  Google Scholar 

  • Ramos LMA, Latorraca JVF, Pastro MS, Souza MT, Garcia RA, Carvalho AM (2011) Radial variation of wood anatomical characters of Eucalyptus grandis W. Hill Ex Maiden and age of transition between adult and juvenile Wood. Sci For 39(92):411–418

    Google Scholar 

  • Reis AA, Protásio TP, Melo ICNA, Trugilho PF, Carneiro ACO (2012) Wood composition and charcoal of Eucalyptus urophylla in different planting locations. Pesqui Florest Bras 32(71):277–290

    Article  Google Scholar 

  • Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR (2019) Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manag 438:63–74

    Article  Google Scholar 

  • Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG (2016) Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J Trop For Sci 28(3):243–248

    Google Scholar 

  • Santos RC, Carneiro ACO, Vital BR, Castro RVO, Vidaurre GB, Trugilho PF, Castro AFNM (2016) Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciênc Florest 26(2):657–669

    Article  Google Scholar 

  • Schwerz F, Eloy E, Elli EF, Caron BO (2019) Reduced planting spacing increase radiation use efficiency and biomass for energy in black wattle plantations: towards sustainable production systems. Biomass Bioenergy 120:229–239

    Article  Google Scholar 

  • Silva L, Lima H (2007) Nomenclatural changes in the genus Tachigali Aubl. (Leguminosae - Caesalpinioideae) in Brazil. Rodriguésia 58(2):397–401

    Article  Google Scholar 

  • Silva JC, Matos JLM, Oliveira JTS, Evangelista WV (2005) Influence of age and position along the trunk on the chemical composition of Eucalyptus grandis Hill ex. Maiden wood. Rev Árvore 29(3):455–460

    Article  Google Scholar 

  • Silva AR, Gonçalves DA, Sales A (2016) Tachi-branco performance in response to the combined fertilization of phosphorus and potassium in oxisol different. Acta Iguazu 2(5):37–48

    Google Scholar 

  • Simpson W, Tenwolde A (1999) Physical properties and moisture relations of wood. In: Forest Products Laboratory (ed) Wood handbook: wood as an engineering material. Forest Products Laboratory, Madison, pp 3–25

  • Souza AP, Gaspar M, Tiné MAS, Buckeridge MS (2008) Biologia & mudanças climáticas no Brasil. Rima Editora, São Carlos, p 250

    Google Scholar 

  • Sturion JA, Pereira JCD, Chemin MS (1988) Wood quality of Eucalyptus viminalis for energy purpose in function of spacing and harvesting age. Bol Pesqui Florest 1(16):55–59

    Google Scholar 

  • Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Biores Technol 101(18):3808–3815

    Article  CAS  Google Scholar 

  • Tenorio C, Moya R, Arias-Aguilar D, Briceño-Elizondo E (2016) Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind Crops Prod 82:63–73

    Article  Google Scholar 

  • The Brazilian tree industry-IBA (2017). http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf. Accessed 17 March 2018

  • Tonini H, Schwengber DR, Morales MM, Oliveira JMF (2018) Growth and wood energy quality of Tachigali vulgaris in different spacing. Braz J For Res 38(1):1–8

    Google Scholar 

  • Trugilho PF, Arantes MDC, Pádua FA, Almado RP, Baliza AER (2010) Estimate of fixed carbon in the wood of a hybrid clone of Eucalyptus urophylla an Eucalyptus grandis. Cerne 16(5):33–40

    Google Scholar 

  • Trugilho PF, Goulart SL, Assis CO, Couto FBS, Alves ICN, Protásio TP, Napoli A (2015) Growing characteristics chemical composition physical and dry mass estimated of wood in young Eucalyptus species and clones. Ciênc Rural 45(4):661–666

    Article  Google Scholar 

  • Vale AT, Brasil MAM, Carvalho CM, Veiga RAA (2000) Energy production of stem of Eucalyptus grandis Hill ex Maiden and Acacia mangium Willd in different levels of fertilization. Cerne 6(1):83–88

    Google Scholar 

  • Vale AT, Brasil MAM, Leão AL (2002) Energetic quantification and characterization of wood and bark of species of “Cerrado”. Ciênc Florest 1(12):71–80

    Article  Google Scholar 

  • Wu SJ, Xu JM, Li GY, Du ZH, Lu ZH, Li BQ (2012) Age trends and correlations of growth and wood properties in clone of Eucalyptus urophylla × Eucalyptus grandis in Guangdong, China. J For Res 23(3):467–472

    Article  CAS  Google Scholar 

  • Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90(3):1128–1132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by Agricultural Research Corporation of Amapá (EMBRAPA - Eastern Amazonia Unit), Amazonia Bank (BASA), Coordination for the Improvement of Higher Level Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and Jari Celulose S. A. Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Bufalino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was financially supported by Agricultural Research Corporation of Amapá (EMBRAPA - Eastern Amazonia Unit), Amazonia Bank (BASA), Coordination for the Improvement of Higher Level Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and Jari Celulose S. A. Company.

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Silva, M.O., da Silva, M.G., Bufalino, L. et al. Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes. J. For. Res. 32, 211–224 (2021). https://doi.org/10.1007/s11676-019-01068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01068-8

Keywords

Navigation