Skip to main content
Log in

Transcriptome analysis reveals dynamic changes in the salt stress response in Salix

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Soil salinization is a serious ecological problem worldwide and information regarding the salt tolerance mechanisms of Salix is scarce. To elucidate the dynamic changes in the molecular mechanisms of Salix under salt stress, we generated gene expression profiles and examined changes in the expression of those genes. RNA-Seq was used to produce six cDNA libraries constructed from the leaves of Salix × jiangsuensis CL ‘J2345’ treated with NaCl for 0, 2, 6, 12, 24 and 48 h. In total, 249 million clean reads were assembled into 12,739 unigenes, all of which were clustered into 10 profiles based on their temporal expression patterns. KEGG analysis revealed that as an early defense response, the biosynthesis pathways of cutin, suberin and wax, which are involved in cell wall structure, were activated beginning at 2 h. The expression of secondary metabolism genes, including those involved in the phenylpropanoid, flavonoid, stilbenoid, diarylheptanoid and gingerol pathways, peaked at 6 h and 24 h; the upregulated genes were mainly involved in plant hormone pathways and beta-alanine, galactose and betalain metabolism. We identified roles of key phytohormones and found ETH to be the major signaling molecule activating TFs at 12 h; ETH, ABA, IAA and SA were the key molecules at 24 h. Moreover, we found that the upregulated genes were associated with elevated levels of amino acids, sucrose, inositol, stress proteins and ROS-scavenging enzymes, contributing to the maintenance of water balance. This research constitutes the first detailed analysis of salt stress-related mechanisms in Salix and identifies potential targets for genetic manipulation to improve yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosche M, Salani F, Kuzminsky E, Auvinen P, Paulin L, Kangasjarvi J, Loreto F, Valentini R, Mugnozza GS, Sabatti M (2011) Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol 31(12):1335–1355

    CAS  PubMed  Google Scholar 

  • Carlson CH, Choi Y, Chan AP, Serapiglia MJ, Town CD, Smart LB (2017) Dominance and sexual dimorphism pervade the Salix purpurea L. transcriptome. Genome Biol Evol 9(9):2377–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Gao Z, Kerris RJ, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS ONE 5(1):e8640

    PubMed  PubMed Central  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant, Cell Environ 33(4):648–654

    CAS  Google Scholar 

  • Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia local. Sci Rep 6:27752

    CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Tan LL, Hu ZL, Chen GP, Wang GX, Hu TZ (2012) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genom 287(1):39–54

    CAS  Google Scholar 

  • He XD, Zheng JW, Zhou J, He KY, Shi SZ, Wang BS (2015) Characterization and comparison of EST-SSRs in Salix, populus, and eucalyptus. Tree Genet Genom 11(1):820

    Google Scholar 

  • Henriquez-Valencia C, Moreno AA, Sandoval-Ibanez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A (2015) bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J Cell Biochem 116(8):1638–1645

    CAS  PubMed  Google Scholar 

  • Hong YB, Zhang HJ, Huang L, Li DY, Song FM (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    PubMed  PubMed Central  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    PubMed  Google Scholar 

  • Huber SC, Toroser D, Winter H, Athwal GS, Huber JL (1998) Regulation of plant metabolism by protein phosphorylation. Possible regulation of sucrose-phosphate synthase by 14-3-3 proteins. In: Garab G (ed) Photosynthesis: mechanisms and effects: volume I–V: proceedings of the XIth international congress on photosynthesis, Budapest, Hungary, August 17–22, 1998. Springer, Dordrecht, pp 3505–3510

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genom 6(1):36–46

    CAS  Google Scholar 

  • Jiang H, Peng SM, Zhang S, Li XG, Korpelainen H, Li CY (2012) Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance. J Exp Bot 63(10):3709–3726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarwani M, Yoo JM, Dong XN (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144(1):336–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CK, Lim HM, Na JK, Choi JW, Sohn SH, Park SC, Kim YH, Kim YK, Kim DY (2014) A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform 10:69–78

    CAS  Google Scholar 

  • Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, Katam R, Sivan P, Rao KS, Kirti PB, Kishor PBK (2016) Beyond just being foot soldiers—osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environ Exp Bot 132:53–65

    CAS  Google Scholar 

  • Kusuda H, Koga W, Kusano M, Oikawa A, Saito K, Hirai MY, Yoshida KT (2015) Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice. Plant Sci 232:49–56

    CAS  PubMed  Google Scholar 

  • Li XW, Jiang J, Zhang LP, Yu Y, Ye ZW, Wang XM, Zhou JY, Chai ML, Zhang HQ, Arús P, Jia HJ, Gao ZS (2015) Identification of volatile and softening-related genes using digital gene expression profiles in melting peach. Tree Genet Genom 11(4):71

    Google Scholar 

  • Li ST, Zhang L, Wang Y, Xu FF, Liu MY, Lin P, Ren SX, Ma R, Guo YD (2017) Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Sci Rep 7:41397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Lu RJ, Guo GM, He T, Li YB, Xu HW, Gao RH, Chen ZW, Huang JH (2016) Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. Plant Cell Rep 35(8):1719–1728

    CAS  PubMed  Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) Beta-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46(6):749–760

    CAS  PubMed  Google Scholar 

  • Matas A, Rodríquez V, Sánchez L, Paniagua C, Posé S, García-Gago J, Blanco-Portales R, Muñoz-Blanco J, Mercado J (2015) Down-regulation of a pectin acetylesterase gene modifies strawberry fruit cell wall pectin structure and increases fruit firmness. Curr Res Plant Physiol 1:320

    Google Scholar 

  • Qin YX, Wang MC, Tian YC, He WX, Han L, Xia GM (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39(6):7183–7192

    CAS  PubMed  Google Scholar 

  • Rao GD, Zeng YF, Sui JK, Zhang JG (2016) De novo transcriptome analysis reveals tissue-specific differences in gene expression in Salix arbutifolia. Trees 30(5):1647–1655

    CAS  Google Scholar 

  • Ren S, Lyle C, Jiang GL, Penumala A (2016) Soybean salt tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:445

    PubMed  PubMed Central  Google Scholar 

  • Rhee SG, Lee SK (2017) P7—differential function of catalase, glutathione peroxidase, and peroxiredoxin in mouse red blood cells. Free Radic Biol Med 112:6

    Google Scholar 

  • Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C (1999) Crystal structure of pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure 7(8):977–988

    CAS  PubMed  Google Scholar 

  • Shen XY, Wang ZL, Song XF, Xu JJ, Jiang CY, Zhao YX, Ma CL, Zhang H (2014) Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol 86(3):303–317

    CAS  PubMed  Google Scholar 

  • Smart LB, Cameron KD (2008) Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 377–396

    Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WQ, Kim TW, Oses-Prieto JA, Sun Y, Deng ZP, Zhu SW, Wang RJ, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321(5888):557–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu ZY (1982) Breeding and cultivation of Salix. Jiangsu Science and Technology Press, Zhenjiang

    Google Scholar 

  • Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F (2004) Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol 134(4):1527–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HB, Liu DC, Sun JZ, Zhang AM (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162(1):81–89

    CAS  PubMed  Google Scholar 

  • Yang TB, Chaudhuri S, Yang LH, Chen YP, Poovaiah BW (2004) Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279(41):42552–42559

    CAS  PubMed  Google Scholar 

  • Yang EW, Girke T, Jiang T (2013) Differential gene expression analysis using coexpression and RNA-Seq data. Bioinformatics 29(17):2153–2161

    CAS  PubMed  Google Scholar 

  • Yao WJ, Wang L, Zhou BR, Wang SJ, Li RH, Jiang TB (2016) Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J Plant Physiol 198:23–31

    CAS  PubMed  Google Scholar 

  • Zagorchev L, Kamenova P, Odjakova M (2014) The role of plant cell wall proteins in response to salt stress. Sci World J 11:764089

    Google Scholar 

  • Zahaf O, Blanchet S, de Zelicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichante JL, Diet A, Badri M, Zabalza A, Gonzalez EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5(5):1068–1081

    CAS  PubMed  Google Scholar 

  • Zhang HW, Huang ZJ, Xie BY, Chen Q, Tian X, Zhang XL, Zhang HB, Lu XY, Huang DF, Huang RF (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang JJ, Bi YF, Wang LK, Tang LZ, Yu X, Ohtani M, Demura T, Qiang ZG (2014) Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Rep 32(1):185–197

    CAS  Google Scholar 

  • Zhou Y, Yang P, Cui FL, Zhang FT, Luo XD, Xie JK (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of dongxiang wild rice (Oryza rufipogon Griff.). PLoS ONE 11(1):e0146242

    PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    CAS  PubMed  Google Scholar 

  • Zou MJ, Guan YC, Ren HB, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J Zhou and XD He designed the experiments. J Zhou, XY Tian and JW Zheng performed  the experiments. J Zhou  and Jing Huang analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Xudong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding

The work was supported by the National Natural Science Foundation of China (31400572), the Jiangsu Provincial Natural Science Foundation (BK20141039), and National Natural Science Foundation of China (31300556).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Huang, J., Tian, X. et al. Transcriptome analysis reveals dynamic changes in the salt stress response in Salix. J. For. Res. 31, 1851–1862 (2020). https://doi.org/10.1007/s11676-019-00941-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00941-w

Keywords

Navigation