Skip to main content

Advertisement

Log in

Ethics and Epistemology in Big Data Research

  • Symposium: Ethics and Epistemology of Big Data
  • Published:
Journal of Bioethical Inquiry Aims and scope Submit manuscript

Abstract

Biomedical innovation and translation are increasingly emphasizing research using “big data.” The hope is that big data methods will both speed up research and make its results more applicable to “real-world” patients and health services. While big data research has been embraced by scientists, politicians, industry, and the public, numerous ethical, organizational, and technical/methodological concerns have also been raised. With respect to technical and methodological concerns, there is a view that these will be resolved through sophisticated information technologies, predictive algorithms, and data analysis techniques. While such advances will likely go some way towards resolving technical and methodological issues, we believe that the epistemological issues raised by big data research have important ethical implications and raise questions about the very possibility of big data research achieving its goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboab, J., L.A. Celi, P. Charlton, et al. 2016. A “datathon” model to support cross-disciplinary collaboration. Science Translational Medicine 8(333): 333ps8.

  • Adams, J.U. 2015. Genetics: Big hopes for big data. Nature 527(7578): S108–S109.

    Article  CAS  PubMed  Google Scholar 

  • Advisory Council to Google on the Right to be Forgotten. 2015. Report of the advisory council to google on the right to be forgotten. Google Docs [Online]. https://drive.google.com/file/d/0B1UgZshetMd4cEI3SjlvV0hNbDA/view?pli=1&usp=embed_facebook. Accessed October 11, 2016.

  • Alyass, A., M. Turcotte, and D. Meyre. 2015. From big data analysis to personalized medicine for all: Challenges and opportunities. BMC Medical Genomics 8(1): 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • American Society of Clinical Oncology. 2017. How CancerLinQ™ Works. https://cancerlinq.org/how-it-works. Accessed September 10, 2016.

  • Angus, D.C. 2015. Fusing randomized trials with big data: The key to self-learning health care systems? JAMA 314(8): 767–768.

    Article  CAS  PubMed  Google Scholar 

  • Auffray, C., R. Balling, I. Barroso, et al. 2016. Making sense of big data in health research: Towards an EU action plan. Genome medicine 8(1): 71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bate, A., J. Juniper, A.M. Lawton, and R.M. Thwaites. 2016. Designing and incorporating a real world data approach to international drug development and use: What the UK offers. Drug Discovery Today 21(3): 400–405.

    Article  PubMed  Google Scholar 

  • Bender, E. 2015. Big data in biomedicine: 4 big questions. Nature 527(7576): S19–S19.

    Article  CAS  PubMed  Google Scholar 

  • Bohensky, M.A., D. Jolley, V. Sundararajan, et al. 2010. Data linkage: A powerful research tool with potential problems. BMC Health Services Research 10(1): 346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth, P. 2015. Access to anonymised patient data: Corners cannot be cut if patient confidence is to be maintained. BMJ 351: h5817.

    Article  PubMed  Google Scholar 

  • Bourne, P.E., J.R. Lorsch, and E.D. Green. 2015. Perspective: Sustaining the big-data ecosystem. Nature 527(7576): S16–S17.

    Article  CAS  PubMed  Google Scholar 

  • Bourzac, K. 2015. Collaborations: Mining the motherlodes. Nature 527(7576): S8–S9.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, D., and K. Crawford. 2012. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society 15(5): 662–679.

    Article  Google Scholar 

  • Broder, A., L. Adamic, M. Franklin, M.d. Rijke, E. Xing, and K. Yu. 2015. Big data: New paradigm or sound and fury, signifying nothing? In Proceedings of the eighth ACM international conference on web search and data mining, 5–6.

  • Burgio, M.R., J.P. Ioannidis, B.M. Kaminski, et al. 2013. Collaborative cancer epidemiology in the 21st century: The model of cancer consortia. Cancer Epidemiology Biomarkers & Prevention: cebp-0591.

  • Busch, L. 2014. Big data, big questions| A dozen ways to get lost in translation: Inherent challenges in large scale data sets. International Journal of Communication 8: 818.

    Google Scholar 

  • Callebaut, W. 2012. Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43(1): 69–80.

    Article  Google Scholar 

  • Carter, P., G.T. Laurie, and M. Dixon-Woods. 2015. The social licence for research: Why care.data ran into trouble. Journal of Medical Ethics. epub ahead of print, January 23. doi:10.1136/medethics-2014-102374.

  • Caulfield, T. 2004. Biotechnology and the popular press: Hype and the selling of science. Trends in Biotechnology 22(7): 337–339.

    Article  CAS  PubMed  Google Scholar 

  • Chawla, N.V., and D.A. Davis. 2013. Bringing big data to personalized healthcare: A patient-centered framework. Journal of General Internal Medicine 28(3): 660–665.

    Article  PubMed Central  Google Scholar 

  • Chen, B., and A.J. Butte. 2016. Leveraging big data to transform target selection and drug discovery. Clinical Pharmacology & Therapeutics 99(3): 285–297.

    Article  CAS  Google Scholar 

  • China Daily USA. 2016. China planning big data health care model for 2020 [Online]. https://iapp.org/news/a/china-planning-big-data-health-care-model-for-2020/. Accessed September 9, 2016.

    Google Scholar 

  • Chow-White, P.A., M. MacAulay, A. Charters, and P. Chow. 2015. From the bench to the bedside in the big data age: Ethics and practices of consent and privacy for clinical genomics and personalized medicine. Ethics and Information Technology 17(3): 189–200.

    Article  Google Scholar 

  • Christen, M., N. Biller-Andorno, B. Bringedal, K. Grimes, J. Savulescu, and H. Walter. 2016. Ethical challenges of simulation-driven big neuroscience. AJOB Neuroscience 7(1): 5–17.

    Article  Google Scholar 

  • Collins, F.S., and H. Varmus. 2015. A new initiative on precision medicine. New England Journal of Medicine 372(9): 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, F.F. 2014. Big data in biomedicine. Drug Discovery Today 19(4): 433–440.

    Article  PubMed  Google Scholar 

  • Crawford, K., M.L. Gray, and K. Miltner. 2014. Big data| Critiquing big data: Politics, ethics, epistemology| Special section introduction. International Journal of Communication 8: 810.

    Google Scholar 

  • Crump, C., K. Sundquist, and M.A. Winkleby. 2015. Transnational research partnerships: Leveraging big data to enhance US health. Journal of Epidemiology and Community Health. ePub ahead of print: March 12. doi:10.1136/jech-2015-205451.

  • data.gov. 2016. Open government. https://www.data.gov/open-gov/. Accessed September 15, 2016.

  • data.gov.uk. 2016. Opening up government. https://data.gov.uk/. Accessed September 9, 2016.

  • Dereli, T., Y. Coşkun, E. Kolker, Ö. Güner, M. Ağırbaşlı, and V. Özdemir. 2014. Big data and ethics review for health systems research in LMICs: Understanding risk, uncertainty and ignorance—and catching the black swans? The American Journal of Bioethics 14(2): 48–50.

    Article  PubMed  Google Scholar 

  • Dickson, D.J., and J.D. Pfeifer. 2016. Real-world data in the molecular era: Finding the reality in the real world. Clinical Pharmacology & Therapeutics 99(2): 186–197.

    Article  CAS  Google Scholar 

  • Docherty, A. 2014. Big data–Ethical perspectives. Anaesthesia 69(4): 390–391.

    Article  CAS  PubMed  Google Scholar 

  • Dove, E.S., and V. Özdemir. 2015. What role for law, human rights, and bioethics in an age of big data, consortia science, and consortia ethics? The importance of trustworthiness. Laws 4(3): 515–540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dove, E.S., B.M. Knoppers, and H.Z. Ma’n. 2013. An ethics safe harbor for international genomics research? Genome Medicine 5(11): 1.

    Article  Google Scholar 

  • Dove, E.S., D. Townend, E.M. Meslin, et al. 2016. Ethics review for international data-intensive research. Science 351(6280): 1399–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzau, V.J., and G.S. Ginsburg. 2016. Realizing the full potential of precision medicine in health and health care. JAMA 316(16): 1659–1660.

    Article  PubMed  Google Scholar 

  • eMERGE network. 2014. eMERGE network. https://emerge.mc.vanderbilt.edu/. Accessed September 10, 2016.

  • Erdmann, J. 2013. As personal genomes join big data will privacy and access shrink? Chemistry & Biology 20(1): 1–2.

    Article  CAS  Google Scholar 

  • Fiedler, K. 2011. Voodoo correlations are everywhere—Not only in neuroscience. Perspectives on Psychological Science 6(2): 163–171.

    Article  PubMed  Google Scholar 

  • Fierce Biotech. 2016. 10 reasons why biotech needs big data [Online]. http://www.fiercebiotech.com/special-report/10-reasons-why-biotech-needs-big-data. Accessed September 9, 2016.

  • Financial Review. 2016. Medibank will use data to force hospitals, surgeons to address health costs [Online]. http://www.afr.com/business/health/hospitals-and-gps/medibank-will-use-data-to-force-hospitals-surgeons-to-address-health-costs-20160728-gqfh3n. Accessed September 9, 2016.

  • Fischer, T., K. Brothers, P. Erdmann, and M. Langanke. 2016. Clinical decision-making and secondary findings in systems medicine. BMC Medical Ethics 17(1): 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frizzo-Barker, J., P.A. Chow-White, A. Charters, and D. Ha. 2016. Genomic big data and privacy: Challenges and opportunities for precision medicine. Computer Supported Cooperative Work (CSCW) 25(2–3): 115–136.

    Article  Google Scholar 

  • Gal, T.S., T.C. Tucker, A. Gangopadhyay, and Z. Chen. 2014. A data recipient centered de-identification method to retain statistical attributes. Journal of Biomedical Informatics 50: 32–45.

    Article  PubMed  Google Scholar 

  • Genomics England. 2016. The 100,000 genomes project. https://www.genomicsengland.co.uk/the-100000-genomes-project/. Accessed September 10, 2016.

  • Gilbert, R., H. Goldstein, and H. Hemingway. 2015. The market in healthcare data. BMJ 4(351): h5897.

    Article  Google Scholar 

  • Goldstein, B.A., A.M. Navar, M.J. Pencina, and J.P. Ioannidis. 2016. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. Journal of the American Medical Informatics Association 24(1): 198–208.

    Article  PubMed  Google Scholar 

  • Goossens, K., K. Van Uytfanghe, P.J. Twomey, and L.M. Thienpont. 2015. Monitoring laboratory data across manufacturers and laboratories—A prerequisite to make “Big Data” work. Clinica Chimica Acta 445: 12–18.

    Article  CAS  Google Scholar 

  • Hassey, A. 2015. Response of Health and Social Care Information Centre to article on access to anonymised patient data. BMJ 351: h5820.

    Article  PubMed  Google Scholar 

  • Hemkens, L.G., D.G. Contopoulos-Ioannidis, and J.P. Ioannidis. 2016a. Agreement of treatment effects for mortality from routinely collected data and subsequent randomized trials: Meta-epidemiological survey. BMJ 352: i493.

    Article  PubMed  PubMed Central  Google Scholar 

  • ———. 2016b. Current use of routinely collected health data to complement randomized controlled trials: A meta-epidemiological survey. CMAJ Open 4(2): E132–E140.

  • ———. 2016c. Routinely collected data and comparative effectiveness evidence: Promises and limitations. Canadian Medical Association Journal 188(8): E158.

  • Hendler, J. 2014. Data integration for heterogenous datasets. Big data 2(4): 205–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman, S. 2010. Electronic health records and research: Privacy versus scientific priorities. The American Journal of Bioethics 10(9): 19–20.

    Article  PubMed  Google Scholar 

  • ———. 2014. Citizen science: The law and ethics of public access to medical Big Data [Online]. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2491054. Accessed October 11, 2016.

  • ———. 2016. The promise and perils of open medical data. Hastings Center Report 46(1): 6–7.

  • Hoffman, S., and A. Podgurski. 2013. Big bad data: Law, public health, and biomedical databases. The Journal of Law, Medicine & Ethics 41(s1): 56–60.

    Article  Google Scholar 

  • Hood, L., and C. Auffray. 2013. Participatory medicine: A driving force for revolutionizing healthcare. Genome Medicine 5(12): 1–4.

    Article  Google Scholar 

  • Howard, R. 2013. Big data hype cut down to size. Government News 33(5): 26.

    Google Scholar 

  • Ioannidis, J.P. 2005a. Microarrays and molecular research: Noise discovery? The Lancet 365(9458): 454–455.

    Article  Google Scholar 

  • ———. 2005b. Why most published research findings are false. PLoS Medicine 2(8): e124.

  • ———. 2013. Informed consent, big data, and the oxymoron of research that is not research. The American Journal of Bioethics 13(4): 40–42.

  • Janssen, M., E. Estevez, and T. Janowski. 2014. Interoperability in big, open, and linked data—Organizational maturity, capabilities, and data portfolios. Computer 47(10): 44–49.

    Article  Google Scholar 

  • Jee, K., and G.-H. Kim. 2013. Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system. Healthcare Informatics Research 19(2): 79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joyner, M.J., N. Paneth, and J.P. Ioannidis. 2016. What happens when underperforming big ideas in research become entrenched? JAMA 316(13): 1355–1356.

    Article  PubMed  Google Scholar 

  • Kaiser, J. 2016. Funding for key data resources in jeopardy. Science 351(6268): 14–14.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, B. 2016. How should health data be used? Privacy, secondary use, and big data sales. Cambridge Quarterly of Healthcare Ethics 25: 312–329.

    Article  PubMed  Google Scholar 

  • Khoury, M.J., and J.P. Ioannidis. 2014. Big data meets public health. Science 346(6213): 1054–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, E.B. 2013. Building trust in the power of “big data” research to serve the public good. JAMA 309(23): 2443–2444.

    Article  CAS  PubMed  Google Scholar 

  • Lazer, D., R. Kennedy, G. King, and A. Vespignani. 2014. The parable of Google flu: Traps in big data analysis. Science 343(6176): 1203–1205.

    Article  CAS  PubMed  Google Scholar 

  • Madigan, D., P.B. Ryan, M. Schuemie, et al. 2013. Evaluating the impact of database heterogeneity on observational study results. American Journal of Epidemiology 178(4): 645–651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manrai, A.K., J.P. Ioannidis, and I.S. Kohane. 2016. Clinical genomics: From pathogenicity claims to quantitative risk estimates. JAMA 315(12): 1233–1234.

    Article  CAS  PubMed  Google Scholar 

  • Mason, P., W. Lipworth, and I. Kerridge. 2016. More than one way to be global: Globalisation of research and the contest of ideas. American Journal of Bioethics (Open peer commentary) 16(10): 48–49.

    Article  Google Scholar 

  • McKinsey & Company. 2013. How big data can revolutionize pharmaceutical R&D [Online]. http://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/how-big-data-can-revolutionize-pharmaceutical-r-and-d. Accessed September 9, 2016.

  • Medicines and Healthcare Products Regulatory Agency. 2017. Welcome to The Clinical Practice Research Datalink. https://www.cprd.com/home/. Accessed February 13, 2017.

  • Mischak, H., E. Critselis, S. Hanash, W.M. Gallagher, A. Vlahou, and J.P. Ioannidis. 2015. Epidemiologic design and analysis for proteomic studies: A primer on-omic technologies. American Journal of Epidemiology 181(9): 635–647.

    Article  PubMed  Google Scholar 

  • Mittelstadt, B.D., and L. Floridi. 2016. The ethics of big data: Current and foreseeable issues in biomedical contexts. Science and Engineering Ethics 22(2): 303–341.

    Article  PubMed  Google Scholar 

  • Moore, S.M., D.R. Maffitt, K.E. Smith, et al. 2015. De-identification of medical images with retention of scientific research value. RadioGraphics 35(3): 727–735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostert, M., A.L. Bredenoord, M.C. Biesaart, and J.J. van Delden. 2015. Big Data in medical research and EU data protection law: Challenges to the consent or anonymise approach. European Journal of Human Genetics 24: 956–960.

    Article  PubMed  PubMed Central  Google Scholar 

  • Motherboard. 2015. ‘Oblivion’ is the software that could automate the ‘right to be forgotten’ [Online]. http://motherboard.vice.com/read/oblivion-is-the-software-that-could-automate-the-right-to-be-forgotten. Accessed October 11, 2016.

  • Murdoch, T.B., and A.S. Detsky. 2013. The inevitable application of big data to health care. JAMA 309(13): 1351–1352.

    Article  CAS  PubMed  Google Scholar 

  • Nair, V., C. Pritchard, M. Tewari, and J. Ioannidis. 2014. Design and analysis for studying microRNAs in human disease: A primer on -omic Technologies. American Journal of Epidemiology 180(2): 140–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • National Institutes of Health. 2016. Precision Medicine Initiative Cohort Program. https://www.nih.gov/precision-medicine-initiative-cohort-program. Accessed September 10, 2016.

  • National Patient-Centered Clinical Research Network. 2016. Patient-powered research networks. http://www.pcornet.org/patient-powered-research-networks/. Accessed September 10, 2016.

  • Newman, A.L. 2015. What the “right to be forgotten” means for privacy in a digital age. Science 347(6221): 507–508.

    Article  CAS  PubMed  Google Scholar 

  • NHS England. 2016. The care.data programme [Online]. https://www.england.nhs.uk/ourwork/tsd/care-data/. Accessed September 9, 2016.

  • Office of Science and Technology Policy. 2012. Obama administration unveils “big data” initiative. https://obamawhitehouse.archives.gov/the-press-office/2015/11/19/release-obama-administration-unveils-big-data-initiative-announces-200. Accessed September 9, 2016.

  • Oye, K.A., G. Jain, M. Amador, et al. 2015. The next frontier: Fostering innovation by improving health data access and utilization. Clinical Pharmacology & Therapeutics 98(5): 514–521.

    Article  CAS  Google Scholar 

  • Parikh, R.B., M. Kakad, and D.W. Bates. 2016. Integrating predictive analytics into high-value care: The dawn of precision delivery. JAMA 315(7): 651–652.

    Article  CAS  PubMed  Google Scholar 

  • Patel, C.J., B. Burford, and J.P. Ioannidis. 2015. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. Journal of Clinical Epidemiology 68(9): 1046–1058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, C.J., J. Ji, J. Sundquist, J.P. Ioannidis, and K. Sundquist. 2016. Systematic assessment of pharmaceutical prescriptions in association with cancer risk: A method to conduct a population-wide medication-wide longitudinal study. Scientific Reports 6(Aug 10): 31308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Personal Genome Project. 2016. Sharing personal genomes. http://www.personalgenomes.org/. Accessed September 10, 2016.

  • Ploug, T., and S. Holm. 2015. Meta consent: A flexible and autonomous way of obtaining informed consent for secondary research. BMJ 350: h2146.

    Article  PubMed  Google Scholar 

  • Prasser, F., F. Kohlmayer, and K.A. Kuhn. 2016a. Efficient and effective pruning strategies for health data de-identification. BMC Medical Informatics and Decision Making 16(1): 1.

    Article  Google Scholar 

  • ———. 2016b. The importance of context: Risk-based de-identification of biomedical data. Methods of Information in Medicine 55(4): 347–355.

  • Propellor. 2016. Citizen science and digital health tools inspiring public health impact. https://www.propellerhealth.com/2016/04/07/citizen-science-and-digital-health-tools-inspiring-public-health-impact/. Accessed September 9, 2016.

  • Puschmann, C., and J. Burgess. 2014. Big data, big questions| Metaphors of big data. International Journal of Communication 8: 820.

    Google Scholar 

  • Raghupathi, W., and V. Raghupathi. 2014. Big data analytics in healthcare: Promise and potential. Health Information Science and Systems 2(1): 1–10.

    Article  Google Scholar 

  • Roden, D.M., and J.C. Denny. 2016. Integrating electronic health record genotype and phenotype datasets to transform patient care. Clinical Pharmacology & Therapeutics 99(3): 298–305.

    Article  CAS  Google Scholar 

  • Roski, J., G.W. Bo-Linn, and T.A. Andrews. 2014. Creating value in health care through big data: Opportunities and policy implications. Health Affairs 33(7): 1115–1122.

    Article  PubMed  Google Scholar 

  • Rothstein, M.A. 2015. Ethical issues in big data health research: Currents in contemporary bioethics. The Journal of Law, Medicine & Ethics 43(2): 425–429.

    Article  Google Scholar 

  • Rothwell, P.M. 2005. Subgroup analysis in randomised controlled trials: Importance, indications, and interpretation. The Lancet 365(9454): 176–186.

    Article  Google Scholar 

  • Ryan, P.B., D. Madigan, P.E. Stang, J. Marc Overhage, J.A. Racoosin, and A.G. Hartzema. 2012. Empirical assessment of methods for risk identification in healthcare data: Results from the experiments of the Observational Medical Outcomes Partnership. Statistics in Medicine 31(30): 4401–4415.

    Article  PubMed  Google Scholar 

  • Sacristán, J.A., and T. Dilla. 2015. No big data without small data: Learning health care systems begin and end with the individual patient. Journal of Evaluation in Clinical Practice 21(6): 1014–1017.

    Article  PubMed  Google Scholar 

  • Sboner, A., X.J. Mu, D. Greenbaum, R.K. Auerbach, and M.B. Gerstein. 2011. The real cost of sequencing: Higher than you think! Genome Biology 12(8): 1.

    Article  Google Scholar 

  • Scaiano, M., G. Middleton, L. Arbuckle, et al. 2016. A unified framework for evaluating the risk of re-identification of text de-identification tools. Journal of Biomedical Informatics 63: 174–183.

    Article  PubMed  Google Scholar 

  • Schadt, E.E. 2012. The changing privacy landscape in the era of big data. Molecular Systems Biology 8(1): 612.

    PubMed  PubMed Central  Google Scholar 

  • Schneeweiss, S., and J. Avorn. 2005. A review of uses of health care utilization databases for epidemiologic research on therapeutics. Journal of Clinical Epidemiology 58(4): 323–337.

    Article  PubMed  Google Scholar 

  • Scientific American. 2014. Citizen science is stimulating a wealth of innovative projects. http://www.scientificamerican.com/article/citizen-science-is-stimulating-a-wealth-of-innovative-projects/. Accessed September 9, 2016.

  • Shah, N.H., and J.D. Tenenbaum. 2012. The coming age of data-driven medicine: Translational bioinformatics’ next frontier. Journal of the American Medical Informatics Association 19(e1): e2–e4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoenbill, K., N. Fost, U. Tachinardi, and E.A. Mendonca. 2014. Genetic data and electronic health records: A discussion of ethical, logistical and technological considerations. Journal of the American Medical Informatics Association 21(1): 171–180.

    Article  PubMed  Google Scholar 

  • Souilmi, Y., A.K. Lancaster, J.-Y. Jung, et al. 2015. Scalable and cost-effective NGS genotyping in the cloud. BMC Medical Genomics 8(1): 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoeklé, H.-C., M.-F. Mamzer-Bruneel, G. Vogt, and C. Hervé. 2016. 23andMe: A new two-sided data-banking market model. BMC Medical Ethics 17(1): 1.

    Article  Google Scholar 

  • Swan, M. 2013. The quantified self: Fundamental disruption in big data science and biological discovery. Big Data 1(2): 85–99.

    Article  PubMed  Google Scholar 

  • ———. 2012. Protecting patient privacy in the age of big data. UMKC Law Review 81: 385.

    Google Scholar 

  • Terry, N. 2013. Big data proxies and health privacy exceptionalism. Health Matrix 2465-108.

  • Tzoulaki, I., T.M. Ebbels, A. Valdes, P. Elliott, and J.P. Ioannidis. 2014. Design and analysis of metabolomics studies in epidemiological research: A primer on-omic technologies. American Journal of Epidemiology 180(2): 129–139.

    Article  PubMed  Google Scholar 

  • Vayena, E., M. Salathé, L.C. Madoff, and J.S. Brownstein. 2015. Ethical challenges of big data in public health. PLoS Computational Biology 11(2): e1003904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicini, P., O. Fields, E. Lai, et al. 2016. Precision medicine in the age of big data: The present and future role of large-scale unbiased sequencing in drug discovery and development. Clinical Pharmacology & Therapeutics 99(2): 198–207.

    Article  CAS  Google Scholar 

  • Waldman, S., and A. Terzic. 2016. Big data transforms discovery–utilization therapeutics continuum. Clinical Pharmacology & Therapeutics 99(3): 250–254.

    Article  CAS  Google Scholar 

  • Weber, G.M., K.D. Mandl, and I.S. Kohane. 2014. Finding the missing link for big biomedical data. JAMA 311(24): 2479–2480.

    CAS  PubMed  Google Scholar 

  • Zarate, O.A., J.G. Brody, P. Brown, M.D. Ramirez‐Andreotta, L. Perovich, and J. Matz. 2016. Balancing benefits and risks of immortal data. Hastings Center Report 46(1): 36–45.

    Article  PubMed  Google Scholar 

  • Zuccon, G., D. Kotzur, A. Nguyen, and A. Bergheim. 2014. De-identification of health records using Anonym: Effectiveness and robustness across datasets. Artificial Intelligence in Medicine 61(3): 145–151.

    Article  PubMed  Google Scholar 

  • Zulman, D.M., N.H. Shah, and A. Verghese. 2016. Evolutionary pressures on the electronic health record: Caring for complexity. JAMA 316(9): 923–924.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Associate Professor Ainsley Newson for her helpful guidance on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Lipworth.

Ethics declarations

Funding

Research related to this article has been funded by the National Health and Medical Research Council (Career Development Fellowship APP1036539 and Project Grant APP APP1083980).

Conflict of Interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipworth, W., Mason, P.H., Kerridge, I. et al. Ethics and Epistemology in Big Data Research. Bioethical Inquiry 14, 489–500 (2017). https://doi.org/10.1007/s11673-017-9771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11673-017-9771-3

Keywords

Navigation