Skip to main content
Log in

Phase Relations in the Al2O3-V2O5-MoO3 System in the Solid State. The Crystal Structure of AlVO4

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase relations in the ternary oxide system Al2O3-V2O5-MoO3 in the solid state in air have been investigated by using the x-ray diffraction (XRD) and differential thermal analysis/thermogravimetric (DTA/TG) methods. It was confirmed that in the subsolidus area of the Al2O3-V2O5-MoO3 system, there exist seven phases, that is Al2O3, V2O5(s.s.), MoO3, AlVO4, Al2(MoO4)3, AlVMoO7, and V9Mo6O40. Seven fields, in which particular phases coexist at equilibrium, were isolated. The crystal structure of AlVO4 has been refined from x-ray powder diffraction data. Its space group is triclinic, \( P\bar{1} \), Z = 6, with a = 0.65323(1) nm, b = 0.77498(2) nm, c = 0.91233(3) nm, α = 96.175(2)°, β = 107.234(3)°, γ = 101.404(3)°, V = 0.42555 nm3. The crystal structure of the compound is isotypic with FeVO4. Infrared (IR) spectra of AlVO4 and FeVO4 are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Bielański and M. Najbar, V2O5-MoO3 Catalysts for Benzene Oxidation, Appl. Catal., 1997, 157, p 223-261.

    Article  Google Scholar 

  2. A. Parmaliana, F. Arena, F. Frusten, N. Giordano, M.S. Scurrell, and V. Sokolovskii, Partial Oxidation of Methane to Formaldehyde on Bulk and Silica Supported MoO3 and V2O5 Catalysts: Surface Features and Reaction Mechanism, Stud. Surf. Sci. Catal., 1997, 107, p 2328-2332.

    Google Scholar 

  3. J. Tichy, Oxidation of Acrolein to Acrylic Acid over Vanadium-Molybdenum Oxide Catalysts, Appl. Catal., 1997, 157, p 363-385.

    Article  Google Scholar 

  4. T. Kabe, W. Qian, Y. Hirai, L. Li, and A. Ishihara, Hydrodesulfurization and Hydrogenation Reactions on Noble Metal Catalysts., J. Catal., 2000, 190, p 191-198.

    Article  Google Scholar 

  5. J.M. Lewis, R.A. Kydal, and J. Catal., The MoO3-Al2O3 Interaction: Influence of Phosphorus on MoO3 Impregnation and Reactivity in Thiophene HDS, J. Catal., 1992, 136, p 478-486.

    Article  Google Scholar 

  6. I.L. Botto, M. Vassalo, G. Fierro, D. Cordischi, M. Inversi, and G. Minelli, Some Aspects of β-V9Mo6O40 Reduction: TPR, XRD, SEM, IR and EPR Spectroscopic Studies, J. Mater., Chem., 1997, 7, p 2297-2286.

    Article  Google Scholar 

  7. H. Schadow, H. Oppermann, and B. Wehner, Untersuchungen zum ternären System V/Mo/O, Z. Anorg. Allg. Chem., 1995, 621, p 624-629 (in German).

    Article  Google Scholar 

  8. N. Strupler and A. Morette, Sur les equilibres liquide-solide dans le de MIIe, C.R. Acad. Sci., Paris, 1965, 260, p 1971-1973 (in French).

    Google Scholar 

  9. A. Magneli and B. Blomberg, Studies on the Vanadium Pentaoxide-Molybdenum Trioxide System, Acta Chem. Scand., 1951, 5, p 585-584.

    Google Scholar 

  10. H.A. Eick and L. Kihlborg, The Crystal Structure of V2MoO8, Acta Chem. Scand., 1966, 20, p 1658-1666.

    Article  Google Scholar 

  11. A. Bielański, K. Dyrek, J. Poźniczek, and E. Wenda, Studies on the V2O5-MoO3 System: Magnetic Properties, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1971, 19, p 513-521.

    Google Scholar 

  12. R.C.T. Slade, A. Ramanan, B.C. West, and E. Prince, The Structure of V9Mo6O40 Determined by Powder Neutron Diffraction, J. Solid State Chem., 1989, 82, p 65-69.

    Article  ADS  Google Scholar 

  13. R.H. Jarman and A.K. Cheetham, An Investigation of Phase Equilibria in the System MoO3-V2OX (4 < x < 5) by Analytical Electron Microscopy, Mater. Res. Bull., 1982, 17, p 1011-1015.

    Article  Google Scholar 

  14. V.L. Volkov, G.Sh. Tynkacheva, A.A. Fotiev, and E.V. Tkachenko, Sistema V2O5-MoO3, Zh. Neorg. Khim., 1972, 17, p 2803-2805.

    Google Scholar 

  15. V. Cirilli and A. Burdese, Sulla corrosione dei metalli ad alta temperatura da parte dell' anidride vanadica, Metall. Ital., 1957, 49, p 320-322, in Italian

    Google Scholar 

  16. A.A. Fotiev, L.L. Surat, G.A. Korablev, and A.H. Tretiakov, Fazovyje sootnovieniav sistemie V2O5-Fe2O3-Al2O5-Cr2O3, Zh. Neorg. Khim., 1981, 26, p 242-248 (in Russian).

    Google Scholar 

  17. O. Yamaguchi, T. Uegaki, Y. Miyata, and K. Shimizu, Formation of AlVO4 Solid Solution from Alkoxides, J. Am. Ceram. Soc., 1987, 70, p 198-200.

    Google Scholar 

  18. S.M. Cheshnitski, A.A. Fotiev, and L.L. Surat, Sistema V2O5-Al2O3, Zh. Neorg. Khim., 1983, 28, p 1342- 1344 (in Russian).

    Google Scholar 

  19. E.J. Baran and I.L. Botto, Kristallographische Daten und IR-Spektrum von AlVO4, Monatsh. Chem., 1977, 108, p 311-318 (in Germany).

    Article  Google Scholar 

  20. D. Barham, An Investigation of the System V2O5-Al2O3, Trans. Brit. Ceram. Soc., 1965, 64, p 371-375.

    Google Scholar 

  21. M. Kurzawa and G. Dabrowska, Subsolidus Phase Equilibria in the System AlVO4-MoO3, J. Therm. Anal., 1995, 45, p 1049-1053.

    Article  Google Scholar 

  22. F.O. Hardcastle and I.E. Wachs, Determination of Vanadium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy, J. Phys. Chem., 1991, 95, p 5031-5041.

    Article  Google Scholar 

  23. H. Eckert and I.E. Wachs, Solid-State 51 V NMR Structural Studies on Supported Vanadium(V) Oxide Catalysts: Vanadium Oxide Surface Layers on Alumina and Titania Supports, J. Phys. Chem., 1989, 93, p 6796-6805.

    Article  Google Scholar 

  24. T. Groń, H. Duda, J. Krok-Kowalski, J. Walczak, E. Filipek, P. Tabero, A. Wyrostek, and K. Bärner, Electrical and Optical Properties of AVO4 (A = Fe, Cr, Al) Compounds, Radiat. Effects Defects Solids, 1995, 133, p 341-348.

    Article  Google Scholar 

  25. B. Robertson and E. Kostiner, Crystal Structure and Mössbauer Effect Investigation of FeVO4, J. Solid State Chem., 1972, 4, p 29-37.

    Article  ADS  Google Scholar 

  26. P. Forzatti, C.M. Mari, and P. Villa, Defect Structure and Transport Properties of Cr2(MoO4)3 and Al2(MoO4)3, Mater. Res. Bull., 1987, 22, p 1593-1602.

    Article  Google Scholar 

  27. A.W. Sleight and L.H. Brixner, A New Ferroelastic Transition in Some Al2(MoO4)3 Molybdates and Tungstates, J. Solid State Chem., 1973, 7, p 172-174.

    Article  ADS  Google Scholar 

  28. W.T.A. Harrison and A. Cheetham, The Crystal Structure of Aluminum Molybdate, Al2(MoO4)3, Determined by Time-of-Flight Power Neutron Diffraction, J. Solid State Chem., 1988, 76, p 328-333.

    Article  ADS  Google Scholar 

  29. L.M. Plyasova and L.M. Kefeli, Rentgenograficzeskije isliedovania molibdatov chroma i aluminia, Izv. Akad. Nauk SSSR, Neorg. Mater., 1967, 3, p 906-908 (in Russian).

    Google Scholar 

  30. V.K. Trunov, V.V. Lucenko, and L.M. Kova, O bzaimodiejstvi okisi aluminia z triehokisjami wolframa i molibdena, Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. Khim. Tekhnol., 1967, 4, p 375-376 (in Russian).

    Google Scholar 

  31. K. Nassau, H.J. Levinstein, and G.M. Loiacono, A Comprehensive Study of Trivalent Tungstates and Molybdates of the Type L2(MoO4)3, J. Phys. Chem. Solids, 1965, 26, p 1805-1816.

    Article  ADS  Google Scholar 

  32. J. Walczak and P. Tabero, Studies on the System Al2O5-V2O5-MoO3, J. Therm. Anal., 1990, 36, p 2173-2176.

    Article  Google Scholar 

  33. J. Walczak, P. Tabero, and E. Filipek, Synthesis of AlVMoO7, Thermochim. Acta, 1996, 275, p 249-257.

    Article  Google Scholar 

  34. K. Knorr, P. Jakubus, G. Dąbrowska, and M. Kurzawa, Crystal Structure Determination of AlVMoO7 from X-ray Powder Diffraction Data, J. Solid State Inorg. Chem., 1998, 35, p 519-530.

    Article  Google Scholar 

  35. J. Walczak and P. Tabero, The AlVMoO7 and Its Certain Properties, Mezhdunarodnaya Konferentsiya Khimiya Tverdogo Tela, Odessa, SSSR, 1990, Tezisy Dokl., Chast II, p 160-161

  36. M. Kurzawa and G. Dąbrowska, Phase Diagram of the AlVO4-MoO3 system, Polish J. Chem., 1996, 70, p 417-422.

    Google Scholar 

  37. M. Kurzawa, G. Dąbrowska, Studies on the AlVMoO7–V2O5 system, J. Therm. Anal. Cal., 1999, 56, p 217-222.

    Article  Google Scholar 

  38. M. Kurzawa and G. Dąbrowska, Phase Equilibria in the System V9Mo6O40-AlVMoO7, J. Therm. Anal. Cal., 1999, 55, p 243-247.

    Article  Google Scholar 

  39. M. Kurzawa and G. Dąbrowska, Phase Equilibria in the AlVO4-Al2(MoO4)3 System, J. Phase Equil., 1997, 18, p 147-151.

    Article  Google Scholar 

  40. M. Kurzawa and G. Dąbrowska, Reactivity of Al2(MoO4)3 with V2O5 in the Solid State, Solid State Ionics, 1997, 101-103, p 1189-1193.

    Article  Google Scholar 

  41. O.S. Owen and H.H. Kung, Effect of Cation Reducibility on Oxidative Dehydrogenation of Butane on Orthovanadates, J. Mol. Catal., 1993, 79, p 265-284.

    Article  Google Scholar 

  42. J. Walczak, J. Ziolkowski, M. Kurzawa, J. Osten-Sacken, and M. Lysio, Studies on the Ferric Oxide (Fe2O3)-Vanadium Oxide (V2O5) System, Polish J. Chem., 1985, 59, p 255-262.

    Google Scholar 

  43. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1989

  44. J. Rodriguez-Carrajal, Program FullProf, Version 3.2, Jan 96-LLb-JRC, 1997

  45. H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr., 1967, 22, p 151-152.

    Article  Google Scholar 

  46. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, 2, p 65-71.

    Article  Google Scholar 

  47. R.A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, 1993

  48. Z. Kluz and J. Waclawska, Precise Determination of Powder Density, Roczniki Chemii, 1974, 49, p 839.

    Google Scholar 

  49. R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., 1976, A32, p 751-767.

    Article  ADS  Google Scholar 

  50. D.A. Stephenson and P.B. Moore, Crystal Structure of Grandidierite (Mg,Fe)Al3SiBO9, Acta Crystallogr., 1968, B24, p 1518-1522.

    Article  Google Scholar 

  51. T. Araki, J.J. Finney, and T. Zoltai, The Crystal Structure of Augelite, Am. Mineral., 1968, 53, p 1096-1103.

    Google Scholar 

  52. C.W. Burnham and M.J. Buerger, Refinement of the Crystal Structure of Andalusite, Z. Kristallogr., 1961, 115, p 269-290.

    Article  Google Scholar 

  53. M. Kurzawa, Infrared Spectra of FeVMoO7 and Fe4V2Mo3O20, J. Mater. Sci. Lett., 1992, 11, p 976-979.

    Article  Google Scholar 

  54. A.E. Lavat, M.C. Grasselli, and E.J. Baran, The IR Spectra of the (CrxFe1−x)VO4 Phases, J. Solid State Chem., 1989, 78, p 206-208.

    Article  ADS  Google Scholar 

  55. D.I. Roncaglia, I.L. Botto, and E.J. Baran, Characterization of a Low-Temperature Form of InVO4, J. Solid State Chem., 1986, 62, p 11-15.

    Article  ADS  Google Scholar 

  56. E. Filipek, J. Walczak, and P. Tabero, Synthesis and Some Properties of the Phase Cr2V4O13, J. Alloys Compd., 1998, 265, p 121-124.

    Article  Google Scholar 

  57. P. Tarte, Infra-red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of AlO4 Tetrahedra and AlO6 Octahedra, Spectrochim. Acta, 1967, 23A, p 2127-2143.

    Google Scholar 

  58. C.J. Serna, J.L. Rendon, and J.E. Iglesias, Infrared Surface Modes in Corundum-Type Microcrystalline Oxides, Spectrochim. Acta, 1982, 38A, p 797-806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Dąbrowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dąbrowska, G., Tabero, P. & Kurzawa, M. Phase Relations in the Al2O3-V2O5-MoO3 System in the Solid State. The Crystal Structure of AlVO4 . J. Phase Equilib. Diffus. 30, 220–229 (2009). https://doi.org/10.1007/s11669-009-9503-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9503-4

Keywords

Navigation