Skip to main content
Log in

Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Bobzin, M. Öte, T.F. Linke, and T. Königstein, in Verschleiß im Antriebsstrang: Oberflächentechnische Herausforderungen, Beschichtungskonzepte und Prüfmethoden, Thermisches Spritzen, 6 edn., ed. by T. Schläfer, 5 Sept 2014 (Luckenbach, Germany, 2014), pp. 60-74

  2. K. Bobzin, M. Öte, and T. Königstein, in Entwicklung neuartiger Eisenbasiswerkstoffe zur Herstellung reibverlustmindernder Zylinderinnenbeschichtungen, 4. Györer Tribologie Tagung, 4 edn., ed. by K. Schintzel, 28-29 June 2016 (Györ, Hungary, 2016), pp. 83-92

  3. K. Bobzin, F.B.G. Ernst, K.R.M. Richardt, T. Schläfer, C. Verpoort, and G. Flores, Thermal Spraying of Cylinder Bores with the Plasma Transferred Wire Arc Process, Surf. Coat. Technol., 2008, 202(18), p 4438-4443

    Article  Google Scholar 

  4. K. Bobzin, F.B.G. Ernst, J.B. Zwick, T. Schläfer, D. Cook, K. Nassenstein, A. Schwenk, F. Schreiber, T. Wenz, G. Flores, and M. Hahn, Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material Using the Plasma Transferred Wire Arc Thermal Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 344-351

    Article  Google Scholar 

  5. L. Schramm, C. Verpoort, A. Schwenk, K. Bobzin, N. Bagcivan, T. Schläfer, S. Theiß, and K. Yilmaz, in Thermal Spray 2011: Proceedings of International Thermal Spray Conference, Friction improvement of new generations of engines by PTWA cylinder bore coating and new piston rings, 27-29 Sept 2011 (Springer, Hamburg, 2012), pp. 473-478

  6. K. Bobzin, T. Brögelmann, K. Stahl, J.-P. Stemplinger, J. Mayer, and M. Hinterstoißer, Influence of Wetting and Thermophysical Properties of Diamond-Like Carbon Coatings on the Frictional Behavior in Automobile Gearboxes Under Elasto-Hydrodynamic Lubrication, Surf. Coat. Technol., 2015, 284, p 290-301

    Article  Google Scholar 

  7. M.H. Djoufack, U. May, N. Bagcivan, T. Brögelmann, and K. Bobzin, Tribological Evaluation of Hydrogenated DLC in Diesel Lubricated Model Test, Surf. Coat. Technol., 2014, 258, p 381-391

    Article  Google Scholar 

  8. B. Gand, A. Wörfel, C. Mörz, and H. Saule, Thermal Spray 2016: Proceedings of International Thermal Spray Conference, Integration of a thermal spray process into the GROB production line for passenger car aluminum engine block of combustion engines into mass production proceedings, 10-12 May 2016 (Shanghai, China), pp. 206-209

  9. V.W. Wong and S.C. Tung, Overview of Automotive Engine Friction and Reduction Trends: Effects of Surface, Material, and Lubricant-Additive Technologies, Friction, 2016, 4(1), p 1-28

    Article  Google Scholar 

  10. X. Wang, L. Zhu, Z. Zhou, G. Liu, E. Liu, Z. Zenz, and X. Wu, Tribological Properties of WC-Reinforce Ni-Based Coatings Under Different Lubricating Conditions, J. Therm. Spray Technol., 2015, 24(7), p 1323-1332

    Article  Google Scholar 

  11. S. Aldajah, O.O. Ajayi, G.R. Fenske, and I.L. Goldblatt, Effect of Exhaust Gas Recirculation (EGR) Contamination of Diesel Engine Oil on Wear, Wear, 2007, 263, p 93-98

    Article  Google Scholar 

  12. R. Reitz, G. Andersohn, and M. Oechsner, Impact and Interaction of Water, Chloride, and Acetic Acid on the Corrosion Behavior of Aluminum in Ethanol Blended Gasoline Fuels, CORROSION 2015

  13. H. Kosaka, Y. Wakisaka, Y. Nomura, Y. Hotta, M. Koike, and K. Nakakita, Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat, SAE Int. J. Eng., 2013, 6(1), p 142-149

    Article  Google Scholar 

  14. K. Bobzin, F. Ernst, J. Zwick, T. Schlaefer, D. Cook, K. Nassenstein, A. Schwenk, F. Schreiber, T. Wenzel, G. Flores, and M. Hahn, Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using Plasma Transferred Wire Arc Thermal Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 344-351

    Article  Google Scholar 

  15. C. Bochert, in Proceedings, 4. Györer Tribologietagung, ed. by K. Schintzel. Werkstoffentwicklung für korrosionsbeständige Zylinderlaufbahnbeschichtunge für Ottomotoren “Material development for corrosion resistant cylinder liner coating for CI-engines”, 28-29 June (Györ, Hungary), pp. 55-68

  16. P. Ernst, B. Distler, and G. Barbezat, SUMEBore: Coating Solution of Cylinder Liner Surface, Therm. Spray Bull., 2011, 1, p 26-29

    Google Scholar 

  17. U. Morawitz and J. Mehring, Benefits of Thermal Spray Coating in Internal Combustion Engines, with Specific View on Friction Reduction and Thermal Management, SAE Int. J. Eng., 2013, https://doi.org/10.4271/2013-01-0292

    Google Scholar 

  18. A. Vencl, Tribological Behavior of Ferrous Based APS Coatings Under Dry Sliding Conditions, J. Therm. Spray Technol., 2015, 24(4), p 671-682

    Article  Google Scholar 

  19. A. Limpichaipanit, C. Banjongprasert, P. Jaiban, and S. Jiansirisomboon, Fabrication and Properties of Thermal Sprayed AlSi-Based Coatings from Nanocomposite Powders, J. Therm. Spray Technol., 2013, 22(1), p 18-26

    Article  Google Scholar 

  20. D.-I. Shin, F. Gitzhofer, and C. Moreau, Moreau, Properties of Induction Plasma Sprayed Iron Based Nanostructured Alloy Coatings for Metal Based Thermal Barrier Coatings, J. Therm. Spray Technol., 2007, 16(1), p 118-127

    Article  Google Scholar 

  21. K. Bobzin, M. Öte, and T. Königstein, Investigation of Amorphous/Nanocrystalline Iron-Based Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(3), p 388-397

    Article  Google Scholar 

  22. H.-W. Hoffmeister, and C. Schnell, in 9th International Conference of the European Society for Precision Engineering and Nanotechnology, New mechanical pretreatment process to prepare aluminum crankcases for thermal spraying, (San Sebastian, Spain, 2009), pp. 74-77

  23. C.M. Taylor, Automobile Engine Tribology: Design Considerations for Efficiency and Durability, Wear, 1998, 221(1), p 1-8

    Article  Google Scholar 

  24. L. Schramm, Development of Robust Cylinder Bore Coating Process and Investigation of Different Feedstock Materials, Shaker, Herzogenrath, 2016

    Google Scholar 

  25. B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Chromium at 25-300 °C, Corros. Sci., 1997, 39(1), p 43-57

    Article  Google Scholar 

Download references

Acknowledgments

The work in this paper is performed in the context of the research project “Entwicklung eines Innenbeschichtungsprozesses zur Herstellung korrosionsbeständiger und reibverlustmindernder Eisenbasisschichten für Zylinderlaufbahnen” (KF2757705SU4). This project is funded by the German Federal Ministry of Economics and Technology (BMWi) according to a decision of the German Federal Parliament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Königstein.

Additional information

This article is an invited paper selected from presentations at the 2017 International Thermal Spray Conference, held on June 7-9, 2017, in Düsseldorf, Germany, that has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobzin, K., Öte, M., Königstein, T. et al. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines. J Therm Spray Tech 27, 736–745 (2018). https://doi.org/10.1007/s11666-018-0705-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0705-3

Keywords

Navigation