Skip to main content
Log in

Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays, J. Therm. Spray Technol., 2014, 24(3), p 476-488. doi:10.1007/s11666-014-0203-1

    Article  Google Scholar 

  2. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69(9-12), p 2269-2278. doi:10.1007/s00170-013-5166-8

    Article  Google Scholar 

  3. V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Elsevier, Amsterdam, 2007

    Book  Google Scholar 

  4. J.C. Lee, H.J. Kang, W.S. Chu, and S.H. Ahn, Repair of Damaged Mold Surface by Cold-Spray Method, CIRP Ann. Manuf. Technol., 2007, 56(1), p 577-580

    Article  Google Scholar 

  5. C.A. Widener, M.J. Carter, O.C. Ozdemir, R.H. Hrabe, B. Hoiland, T.E. Stamey, V.K. Champagne, and T.J. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2015, 25(1-2), p 193-201. doi:10.1007/s11666-015-0366-4

    Article  Google Scholar 

  6. R. Lupoi, C. Stenson, K.A. McDonnell, D.P. Dowling, and E. Ahearne, Antifouling Coatings Made with Cold Spray onto Polymers: Process Characterization, CIRP Ann. Manuf. Technol., 2016, 65(1), p 545-548

    Article  Google Scholar 

  7. J. Pattison, S. Celotto, R. Morgan, M. Bray, and W. O’Neill, Cold Gas Dynamic Manufacturing: A Non-Thermal Approach to Freeform Fabrication, Int. J. Mach. Tools Manuf., 2007, 47(3-4), p 627-634

    Article  Google Scholar 

  8. B. Aldwell, D. Trimble, S. Yin, and R. Lupoi, Enabling Diamond Deposition with Cold Spray Through the Coated Particle Method, Mater. Sci. Forum, 2017, 879, p 1194-1199

    Article  Google Scholar 

  9. M. Bashirzadeh, F. Azarmi, C.P. Leither, and G. Karami, Investigation on Relationship between Mechanical Properties and Microstructural Characteristics of Metal Matrix Composites Fabricated by Cold Spraying Technique, Appl. Surf. Sci., 2013, 275, p 208-216. doi:10.1016/j.apsusc.2012.12.166

    Article  Google Scholar 

  10. M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650. doi:10.1016/j.surfcoat.2016.12.035

    Article  Google Scholar 

  11. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O’Neill, Analysis of Cold Gas Dynamically Sprayed Aluminium Deposits, Mater. Lett., 2004, 58(7-8), p 1317-1320

    Article  Google Scholar 

  12. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  13. F. Klocke, Manufacturing Processes 1, 2011, p 39-94

  14. G. Lu, G.Q. Lu, and Z.M. Xiao, Mechanical Properties of Porous Materials, J. Porous Mater., 1999, 6, p 359-368

    Article  Google Scholar 

  15. M. Czampa, S. Markos, and T. Szalay, Improvement of Drilling Possibilities for Machining Powder Metallurgy Materials, Procedia CIRP, 2013, 7, p 288-293. doi:10.1016/j.procir.2013.05.049

    Article  Google Scholar 

  16. O.R. Tutunea-Fatan, M.A. Fakhri, and E.V. Bordatchev, Porosity and Cutting Forces: From Macroscale to Microscale Machining Correlations, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2011, 225(5), p 619-630. doi:10.1177/2041297510394057

    Article  Google Scholar 

  17. J. Schoop, M. Effgen, T.J. Balk, and I.S. Jawahir, The Effects of Depth of Cut and Pre-Cooling on Surface Porosity in Cryogenic Machining of Porous Tungsten, Procedia CIRP, 2013, 8, p 357-362

    Article  Google Scholar 

  18. M. Arft, F. Klocke, and D. Lung, Evaluation of the Machining Aspects of Austempered Ductile Iron, Int. J. Met., 2012, 6(4), p 35-42

    Google Scholar 

  19. M. Abolghasemi Fakhri, E.V. Bordatchev, and O.R. Tutunea-Fatan, An Image-Based Methodology to Establish Correlations between Porosity and Cutting Force in Micromilling of Porous Titanium Foams, Int. J. Adv. Manuf. Technol., 2012, 60(9-12), p 841-851. doi:10.1007/s00170-011-3647-1

    Article  Google Scholar 

  20. A. Bordin, A. Ghiotti, S. Bruschi, L. Facchini, and F. Bucciotti, Machinability Characteristics of Wrought and EBM CoCrMo Alloys, Procedia CIRP, 2014, 14, p 89-94. doi:10.1016/j.procir.2014.03.082

    Article  Google Scholar 

  21. M.S.A. Aziz, T. Ueda, T. Furumoto, S. Abe, A. Hosokawa, and A. Yassin, Study on Machinability of Laser Sintered Materials Fabricated by Layered Manufacturing System: Influence of Different Hardness of Sintered Materials, Procedia CIRP, 2012, 4, p 79-83. doi:10.1016/j.procir.2012.10.015

    Article  Google Scholar 

  22. F. Montevecchi, N.N.N. Grossi, H. Takagi, A. Scippa, H. Sasahara, and G. Campatelli, Cutting Forces Analysis in Additive Manufactured AISI, H13 Alloy, Procedia CIRP, 2016, 46, p 476-479

    Article  Google Scholar 

  23. E.A. Starke and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2-3), p 131-172. doi:10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  24. E. Louvis, P. Fox, and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Technol., 2011, 211(2), p 275-284. doi:10.1016/j.jmatprotec.2010.09.019

    Article  Google Scholar 

  25. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming, Int. J. Mach. Tools Manuf., 2006, 46(12-13), p 1459-1468

    Article  Google Scholar 

  26. R.C. Dorward and C. Bouvier, A Rationalization of Factors Affecting Strength, Ductility and Toughness of AA6061-Type Al–Mg–Si–(Cu) Alloys, Mater. Sci. Eng. A, 1998, 254(1-2), p 33-44. doi:10.1016/S0921-5093(98)00761-8

    Article  Google Scholar 

  27. A.T. Brammer, J.B. Jordon, P.G. Allison, and M.E. Barkey, Strain-Controlled Low-Cycle Fatigue Properties of Extruded 6061-T6 Aluminum Alloy, J. Mater. Eng. Perform., 2013, 22(5), p 1348-1350. doi:10.1007/s11665-012-0411-0

    Article  Google Scholar 

  28. A.C. Hall, D.J. Cook, R.A. Neiser, T.J. Roemer, and D.A. Hirschfeld, The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol., 2006, 15(2), p 233-238

    Article  Google Scholar 

  29. H.E. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, ASM International, 1996, p 129–243

  30. G.E.P. Box, J.S. Hunter, and W.G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery, Wiley, New York, 2005

    Google Scholar 

  31. Y. Bayat Asl, M. Meratian, A. Emamikhah, R. Mokhtari Homami, and A. Abbasi, Mechanical Properties and Machinability of 6061 Aluminum Alloy Produced by Equal-Channel Angular Pressing, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2015, 229(8), p 1302-1313. doi:10.1177/0954405414535921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Lupoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldwell, B., Kelly, E., Wall, R. et al. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing. J Therm Spray Tech 26, 1573–1584 (2017). https://doi.org/10.1007/s11666-017-0586-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0586-x

Keywords

Navigation