Skip to main content
Log in

Dry Sliding Wear Behavior of Boron-Doped 205 Manganese Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the wear properties of 205 manganese steels produced by a casting process with different boron contents (0.0023-0.0182 wt.%) were investigated, using a pin-on-disc tribometer under dry sliding conditions. The friction coefficient of 205 manganese steel by boron addition (at 0.0076 wt.%) reduced from 0.28 to 0.18. The addition of boron to 205 manganese steel led to a decrease in the friction coefficient due to the lubricating effect of boron. X-ray diffraction showed that the boron addition to 205 manganese steel increased lattice parameters of the samples. The wear test results at 5 and 10 N loads showed that the wear amount of 205 manganese steels decreased with boron addition. Thus, the wear results showed that the wear resistance of 205 manganese steel is increased with the addition of small amounts of boron. Furthermore, scanning electron microscopy images indicated that the characteristic wear mechanisms for the boron-doped samples on the worn surfaces were abrasive, and it was plastic deformation, mild abrasive, and adhesive wear mechanism in the undoped 205 manganese steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Marinelli, M. Sade, and A.F. Guillermet, On the Structural Changes Accompanying the fcc/hcp Martensitic Transformation in Fe–Mn–Co Alloys, Script. Mater., 2002, 46(11), p 805–810

    Article  CAS  Google Scholar 

  2. S.S.M. Tavares, S. Miragliab, and D. Fruchart, Hydrogen Induced Martensite in a Fe–17Mn–1.9Al–0.1C steel, J. Alloys Compds., 2003, 356–357, p 340–342

    Article  Google Scholar 

  3. G.B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part II. FCC → BCC and Other Martensitic Transformations, Met. Trans. A, 1976, 7(12), p 1905–1914

    Article  Google Scholar 

  4. I. Meszarosa and J. Prohaszka, Magnetic Investigation of the Effect of α′-Martensite on the Properties of Austenitic Stainless Steel, J. Mater. Proces. Technol., 2005, 161(1–2), p 162–168

    Article  Google Scholar 

  5. A.A. Gulyaev, Some Features of γ-ε Martensitic Transformation and Shape Memory Effect in Fe-Mn-Si Based alloys, J. Phys. IV France, 1995, 5(C8), p C8-469–C8-474

    Article  Google Scholar 

  6. D. Schryvers, L. Toth, J. Van Humbeeck, and J. Beyer, Ni2Al Versus Ni5Al3 Ordering in Ni65Al35 Austenite and Martensite, J. Phys. IV France, 1995, 5(C8), p C8-1029–C8-1033

    Article  Google Scholar 

  7. M. Eskil and E. Kanca, Phase Evolution in Fe Mn Si Shape Memory Alloys Due to Forging Speed, Int. J. Mod. Phys. B, 2013, 27(32), p 1350182

    Article  Google Scholar 

  8. G. Kniaginin, Austenitic Manganese Cast Steel, PWN, Krakow, 1968 ((in Polish))

    Google Scholar 

  9. W. Sakwa, S. Jura, and J. Sakwa, Wear Resistance Iron Alloys, STOP, Krakow, 1980 ((in Polish))

    Google Scholar 

  10. S. Hofer, M. Harti, G. Schestak, R. Schneider, E. Arenholz, and L. Samek, Comparison of Austenite High Mn-Steels with Different Mn and C Contents Regarding Their Processing Properties, BHM, 2011, 156(3), p 99–104

    CAS  Google Scholar 

  11. G. Tecza and S. Sobula, Effect of Heat Treatment on Change Microstructure of Cast High-Manganese Hadfield Steel with Elevated Chromium Content, Arch. Foundry Eng., 2014, 14(2), p 5–8

    Article  Google Scholar 

  12. J. Glownia, G. Tecza, M. Aslanowicz, and A. Oscilowski, Tools Cast from the Steel of Composite Structure, Arch. Metall. Mater., 2013, 58(3), p 803–808

    Article  CAS  Google Scholar 

  13. D.J. Mun, E.J. Shin, K.C. Cho, J.S. Lee, and Y.M. Koo, Cooling Rate Dependence of Boron Distribution in Low Carbon Steel, Metall. Mater. Trans. A, 2012, 43(5), p 1639–1648

    Article  CAS  Google Scholar 

  14. B.M. Kapadia, R.M. Brown, and W.J. Murphy, The Influence of Nitrogen, Titanium and Zirconium on the Boron Hardenability Effect in Constructional Alloy Steels, Trans. AIME, 1968, 242, p 1689–1694

    CAS  Google Scholar 

  15. L. Karlsson, H. Norden, and H. Odelius, Non-equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel—I. Large Scale Segregation Behaviour, Acta Metall., 1988, 36(1), p 1–12

    Article  CAS  Google Scholar 

  16. G.F. Melloy, P.R. Slimon, and P.P. Podgursky, Optimizing the Boron Effect, Metall. Mater. Trans. B, 1973, 4(10), p 2279–2289

    Article  CAS  Google Scholar 

  17. P. Maitrepierre, J. Rofes-Vernis, and D. Thivellier, Boron in Steel, S.K. Banerjii and J.E. Morral, Ed., Warrendale, AIME, 1979,

    Google Scholar 

  18. D.J. Mun, E.J. Shin, Y.W. Choi, J.S. Lee, and Y.M. Koo, Effects of Cooling Rate, Austenitizing Temperature and Austenite Deformation on the Transformation Behavior of High-Strength Boron Steel, Mater. Sci. Eng. A, 2012, 545, p 214–224

    Article  CAS  Google Scholar 

  19. H.Z. Cui and W.Q. Chen, Effect of Boron on Morphology of Inclusions in Tire Cord Steel, J. Iron. Steel Res. Int., 2012, 19(4), p 22–27

    Article  CAS  Google Scholar 

  20. M. Ueno and T. Inoue, Trans. ISIJ, 1973, 13, p 210

    Article  CAS  Google Scholar 

  21. J.E. Morral and T.B. Cameron, A Model for Ferrite Nucleation Applied to Boron Hardenability, Metall. Trans. A, 1977, 8(11), p 1817–1819

    Article  Google Scholar 

  22. J. Morral and T. Cameron, Boron in Steel, S.K. Banerjii and J.E. Morral, Ed., Warrendale, AIME, 1979,

    Google Scholar 

  23. G. Shigesato, T. Fujishiro, and T. Hara, Boron Segregation To Austenite Grain Boundary In Low Alloy Steel Measured by Aberration Corrected STEM–EELS, Mater. Sci. Eng. A, 2012, 556, p 358–365

    Article  CAS  Google Scholar 

  24. P. Maitrepierre, D. Thivellier, and R. Tricot, Influence of Boron on the Decomposition of Austenite in Low Carbon Alloyed Steels, Metall. Mater. Trans. A, 1975, 6(2), p 287

    Article  Google Scholar 

  25. B. Shen and F. Sun, Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions, Chin. J. Mech. Eng., 2009, 22(5), p 658–664

    Article  CAS  Google Scholar 

  26. X. Wang, L. Wang, B. Shen, and F. Sun, Friction and Wear Performance of Boron Doped, Undoped Microcrystalline and Fine-Grained Composite Diamond Films, Chin. J. Mech. Eng., 2015, 28(1), p 155–163

    Article  CAS  Google Scholar 

  27. G.F. Melloy, P.P. Slimmon, and P.P. Podgursky, Optimizing the Boron Effect, Metall. Mater. Trans., 1973, 4(10), p 2279–2289

    Article  CAS  Google Scholar 

  28. I. Gunes, Investigation of Tribological Properties and Characterization of Borided AISI, 420 and AISI, 5120 Steels, T. Indian I. Metals, 2014, 67(3), p 359–365

    Article  CAS  Google Scholar 

  29. M. Ulutan, O.N. Celik, H. Gasan, and U. Er, Effect of Different Surface Treatment Methods on the Friction and Wear Behavior of AISI, 4140 Steel, J. Mater. Sci. Technol., 2010, 26(3), p 251–257

    Article  CAS  Google Scholar 

  30. M. Tabur, M. Izciler, F. Gul, and I. Karacan, Abrasive Wear Behavior of Boronized AISI, 8620 Steel, Wear, 2009, 266, p 1106–1112

    Article  CAS  Google Scholar 

  31. L. Taekyung, M. Eshaan, R. Santhosh, and S.L. Chong, Tribological and Corrosion Behaviors of Warm- and Hot-Rolled Ti-13Nb-13Zr Alloys in Simulated Body Fluid Conditions, Int. J. Nanomed., 2015, 10, p 207–212

    Google Scholar 

  32. B. Aktas, V. Balak, and C. Carboga, Dry Sliding Wear Behavior of Boron-Doped AISI, 1020 Steels, Acta Phys. Pol. A, 2017, 132(3), p 455–457

    Article  CAS  Google Scholar 

  33. B. Aktas and H. Tekin, Effects of Co3O4 Addition on Friction and Dry Sliding Wear Characteristics of 8 mol% Yttria-Stabilized Cubic Zirconia, J. Mater. Eng. Perform., 2019, 28(1), p 549–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Harran University, Sanliurfa, Turkey, for allowing the use of their laboratory facilities and also thank Murat Eskil and Serkan Dal for their support in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Aktas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carboga, C., Aktas, B. & Kurt, B. Dry Sliding Wear Behavior of Boron-Doped 205 Manganese Steels. J. of Materi Eng and Perform 29, 3120–3126 (2020). https://doi.org/10.1007/s11665-020-04796-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04796-9

Keywords

Navigation